

Diagnostic Imaging and Endovascular Treatment of Pelvic Congestion Syndrome

Essay

Submitted for partial fulfillment of Master Degree
In Diagnostic and Interventional Radiology
By

Ola Ahmed Atef El-Samadouny

Under The Supervision Of

Prof. Dr. Mohamed Abd EL-Aziz Ali

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University.

Dr. Gamal Eldine Mohamed Niazi

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University.

Faculty of Medicine, Ain Shams University 2013

دور الاشعة التشخيصية والعلاج بالقسطرة في متلازمة إحتقان الحوض

رسالة توطئة للمصول على درجة الهاجستير في الأشعة التشخيصية والتداخلية

مقدمة من الطبيبة/ علا أحمد عاطف السمدوني بكالوريوس الطب والجراحة

تحت اشراف أ.د/محمد عبد العزيز علي

> أستاذ الأشعة التشخيصية والتداخلية كلية الطب - جامعة عين شمس

> > د/ جمال نيازي

مدرس الأشعة التشخيصية والتداخلية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٣

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Abd EL-Aziz** Ali, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for giving me the honor and great advantage of working under his meticulous supervision, and for his kind guidance and support.

My sincere thanks and utmost appreciation are humbly presented to **Dr. Gamal El-Din Mohammed Niazi**, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his supervision, tremendous assistance, patience and support.

I am indebted to my family, my friends and my colleagues for their endless and continuous help and support.

Ola A. Atef

With thanks to God almighty I dedicate this essay to:

My parents, my sisters and my lovely nephew

Without your constant encouragement, support & prayers, I would not have had the courage to pursue my education to this level.

CONTENTS

Chapter	Page
Introduction	1
Chapter 1: Anatomy of the Female Genital Tract	5
Chapter 2: Pathology of Pelvic Congestion Syndrome	23
<u>Chapter 3:</u> Diagnostic Imaging of Pelvic Congestion Syndrome	37
Chapter 4: Endovascular Treatment of Pelvic Congestion Syndrome	66
Chapter 5: Summary and Conclusion	94
References	88
Arabic Summary	I

List of Abbreviations

Abbreviation	Name
Ao	Aorta
CFD	Color Flow Doppler
CT	Computed Tomography
DV	Direct Venography
FDG	Fluorodeoxyglucose
FFE	Fast Field Echo
FLASH	Fast Low Angle Shot
Gd	Gadolinium
GnRH	Gonadotropin Releasing Hormone
GRE	Gradient Echo
HRT	Hormone Replacement Therapy
IV	Intravenous
IVC	Inferior Vena Cava
IVC	Inferior Vena Cava
LK	Left Kidney
LRV	Left Renal Vein
MDCT	Multidetector Computed Tomography
MHz	Megahertz
MPA	Medroxy Progesterone Acetate
MPFF	Micronized Purified Flavonoid Fraction
MRA	Magnetic Resonance Angiography
MRI	Magnetic Resonance Imaging
MRV	Magnetic Resonance Venogram
NBCA	N-Butyl-2-Cyanoacrylate
NSAIDs	Nonsteroidal Anti-Inflammatory Drugs
0	Ovary

OVR	Ovarian Vein Reflux
PACS	Picture Archiving and Communication
	system
PCCO	Pelvic Congestion Cystic Ovaries
PCS	Pelvic Congestion Syndrome
PCVM	Phase-contrast Velocity Mapping
PET	Positron Emission Tomography
PTFE	Polytetra-fluoroethylene
PUVs	Para Uterine Veins
PVI	Pelvic Venous Incompetence
RLRV	Retroaortic Left Renal Vein
SC	Subcutaneous
SMA	Superior Mesenteric Artery
TAUS	Trans-Abdominal Ultrasound
TCE	Trans-Catheter Embolization
TE	Time to Echo
TR	Time to Repeat
TRICKS	Time Resolved Imaging of Contrast
	Kinetics
TR-MRA	Time Resolved Magnetic Resonance
	Angiography
TSE	Turbo Spin Echo
TV-US	Trans-Vaginal Ultrasound
TWIST	Time-Resolved Angiography with
	Interleaved Stochastic Technique
U	Uterus
U/S	Ultrasound
VENC	Velocity Encoding

List of Tables

Chapter 2: Pathology of Pelvic Congestion Syndrome		
Table (2.1)	Etiologies of Chronic Pelvic Pain in women	24
Chapter 3: Diagnostic Imaging of Pelvic Congestion Syndrome		
Table (3.1)	Sequence parameters used for time-resolved	62
	MR Angiography	

List of Figures

Chapter 1: Anatomy of the Female Genital Tract		
Fig. (1.1)	Female External Genital Organs	5
Fig. (1.2)	female internal genital organs	9
Fig. (1.3)	Variations in uterine position and their terminology	11
Fig. (1.4)	Longitudinal transabdominal ultrasound scan of the uterus	12
Fig. (1.5)	T2 weighted images of the female pelvis	12
Fig. (1.6)	The pelvic ligaments seen from above	13
Fig. (1.7)	Dissection revealing the uterus, ovaries, uterine tubes, and related structures	13
Fig. (1.8)	Transvaginal ultrasound of the ovary	19
Fig. (1.9)	Axial CT of the female pelvis	19
Fig. (1.10)	Lymphatic drainage of female internal genital organs	20
Fig. (1.11)	Anatomy of the pelvic venous outflow	21
Fig. (1.12)	Blood supply and venous drainage of uterus, vagina, and ovaries	22
Chapter 2: Pathology of Pelvic Congestion Syndrome		
Fig. (2.1)	Anatomy of ovarian and internal iliac varices	26
Fig. (2.2)	A framework for underlying mechanisms behind pelvic venous congestion	29
Fig. (2.3)	Nutcracker syndrome	30
Fig. (2.4)	Ultrasonographic features of normal, PCO, multicystic and PCCO.	32
Fig. (2.5)	The ovarian point	35

Fig. (2.6)	Vulvar varices	36
Chapter 3: Diagnostic Imaging of Pelvic Congestion Syndrome		
Fig. (3.1)	TAUS of dilated left ovarian vein.	38
Fig. (3.2)	Endoscopic US findings of PCS	40
Fig. (3.3)	TVUS shows dilated ovarian venous plexuses	41
Fig. (3.4)	TVUS shows dilated ovarian venous plexuses	42
Fig. (3.5)	Transabdominal Color Flow Doppler Ultrasound	42
Fig. (3.6)	TVUS	43
Fig. (3.7)	CT demonstrating varices	45
Fig. (3.8)	CT images before and after treatment	46
Fig. (3.9)	CT demonstrating bilateral ovarian vein reflux	47
Fig.(3.10)	Sagittal reconstruction of CT images	48
Fig. (3.11)	Volume-rendered MDCT angiography images	49
Fig. (3.12)	Degrees of ovarian vein reflux	50
Fig. (3.13)	CT images of RLRV with pelvic varices	50
Fig. (3.14)	PET/CT scan of pelvic varices	52
Fig. (3.15)	Axial T2-weighted FSE MR image of vessels of the parametrium	55
Fig. (3.16)	Axial T2-weighted FSE MR image of the ovarian veins	55
Fig. (3.17)	Hyperintense pelvic varices seen In T2 images	56
Fig. (3.18)	Sagittal T2-weighted FSE MR images	56
Fig. (3.19)	Volume-rendered MR angiography image	57
Fig. (3.20)	4D MR Angiography (PCVM)	59
Fig. (3.21)	4D TRAK MRA before and after treatment	61
Fig. (3.22)	Dynamic MR angiography sequence in coronal MIP	63
Fig. (3.23)	Dynamic MR Angiography of Nutcracker syndrome	64

Fig. (3.24)	Dynamic MR angiography of May-Thurner syndrome.	65
Cha	pter 4: Endovascular Treatment of Pelvic Congestion Syndrome	
Fig. (4.1)	Administration of local anesthesia	69
Fig. (4.2)	Photograph shows representative 5-F catheters used	70
Fig. (4.3)	Left renal vein venography	72
Fig. (4.4)	Photograph of Gelfoam	73
Fig. (4.5)	Technique of making the foam paste	74
Fig. (4.6)	Completion venogram after embolization with Gelfoam and coils	75
Fig. (4.7)	Platinum fibered Nester ® coils	76
Fig. (4.8)	Catheter selection for the right ovarian vein	77
Fig. (4.9)	Catheter selection for the internal iliac vein	79
Fig. (4.10)	Completed treatment of the left internal iliac varices	79
Fig. (4.11)	Left ovarian venograph, embolization and follow up	80
Fig. (4.12)	Venogram performed during direct puncture of the right and left labia	81
Fig. (4.13)	Angiographic view of the nutcracker syndrome before and after stenting	82
Fig. (4.14)	Bilateral ovatrian veins coil embolization	86
Fig. (4.15)	Stent displacement	87
Fig. (4.16)	Bilateral paraaortic approach to retroperitoneum for ligation of ovarian veins	91
Fig. (4.17)	Intraoperative photograph for nutcracker syndrome	92
Fig. (4.18)	Nutcracker syndrome before and after anastomosis	92

INTRODUCTION

Chronic pelvic pain (CPP), a noncyclic pelvic pain of more than 6 months duration, is a common health problem among women (*Black et al*, *2010*). It is estimated to affect as many as 39.1% of women at some point in their lives (*Venbrux et al.*, *2012*).

Pelvic congestion syndrome (PCS), First described by Richet in 1857, has been shown to be the underlying aetiology in a significant proportion of patients with chronic pelvic pain (*Liddle and Davies*, 2007).

Incompetence of the ovarian veins and venous reflux are considered the main underlying abnormality in patients with pelvic congestion syndrome, which is typically seen in multiparous women. The absence of valves in the ovarian veins, the compression of the left renal vein between the aorta and the superior mesenteric artery, and left renal vein variations may also be contributing factors (*Karaosmanoglu.et al.*, 2009)

Because of the protean manifestations of PCS and the limited appreciation of this condition by both clinicians and radiologists, PCS is a probably under-recognized condition (*Ganeshan et al.*, 2007).

It is estimated that as many as 80% of pelvic varices go undetected by laparoscopy as a result of technical limitations, which include compression of the varices from peritoneal CO2 insufflation and the resultant decompression of varices while the patient is in Trendelenburg position (*Black et al.*, 2010).

In recent years, Advancements in technology have paved the way for the availability of non-invasive imaging (ultrasound, CT and magnetic resonance venography) (*Freedman et al.*, 2010). They play a central role in establishing the diagnosis, excluding alternative causes of pelvic pain and providing a road map for novel minimally invasive treatment options that are now available (*Freedman et al.*, 2010).

Combined trans abdominal and transvaginal sonography are potentially useful as a non-invasive screening tool for determining which patients with chronic pelvic pain may benefit from selective ovarian venography and trans catheter embolization (*Park et al.*,2004).

Cross-sectional imaging is typically performed before venography to exclude a concurrent pelvic pathologic process. Although CT and MR imaging can demonstrate pelvic varices, published experience is limited and lacks correlation with venography (*Black et al.*, 2010).

Magnetic resonance phase-contrast velocity mapping is a useful tool for diagnosing Pelvic Congestion Syndrome and can avoid invasive procedures such as direct venography (*Meneses et al.*, 2010).

Although US, CT, and MR imaging can demonstrate dilated pelvic veins in the majority of cases, selective venography remains the gold standard in diagnosing PCS (*Ganeshan et al.*, 2007).

Treatment options for PCS remained elusive until recently, due to controversial diagnostic methods and poor understanding of its etiology (*Ignacio et al.*, 2008).

The traditional treatment of pelvic congestion syndrome has included both medical (analgesics, hormones) and surgical approaches (hysterectomy, ovarian vein ligation) (*Pieri et al.*, 2003).

Recently, minimally invasive, day-case-based, percutaneous transcatheter embolization has also been proposed in pelvic congestion syndrome and chronic pelvic pain that do not respond to medical therapy (*Pieri et al.*, 2003). Less expensive than surgery, this therapeutic option is safe, effective, minimally invasive and capable of restoring patients to normal function (*Pieri et al.*, 2003).

AIM OF THE WORK

To briefly describe the clinical manifestations of Pelvic Congestion Syndrome, and to review the role of diagnostic and interventional radiology in the management of the probably under-diagnosed condition.