Ain Shams University

Institute of Environmental studies and Research

Environmental Engineering Department

Suggested Alternatives for the Cleaner Technology of Casting Industry

By

Student/Ismaeil Mohamed Abd Alla

Under Supervision of

Prof. Dr/ Nahed Sobhy Abdel Nour

Faculty of Engineering, Ain Shams University.

Prof. Dr/ Nabil Mahmoud Abd El-Monem

Faculty of Engineering, Cairo University.

This thesis is submitted as a partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering

Ain Shams University

Institute of Environmental studies and Research

Environmental Engineering Department

Suggested Alternatives for the Cleaner Technology of Casting Industry

By

Student/Ismaeil Mohamed Abd Alla

Under Supervision of

Prof. Dr/ Nahed Sobhy Abdel Nour

Faculty of Engineering , Ain Shams University.

Prof. Dr/ Nabil Mahmoud Abd El-Monem

Faculty of Engineering, Cairo University.

This thesis is submitted as a partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering

Abstract

Casting process is one of the most important methods used in producing metallic products, which can be selected from four main production methods; casting, cutting (machining), assembling and joining by rivets, bolts or welding and forming as the forth method.

Casting method of production is affected by many different factors during production operation, resulting in one of two options at the end of this operation; accepting the casted product as first option or rejecting it as a second option.

The problem in selecting casting process as a method of production, is the great environmental loss due to repeated casting of the same rejected product, because of the various kinds and different quantities of polluting emissions produced at the different steps of casting process, beside the emissions from burning the fossil fuel used in melting the quantity of metal needed for this product.

When putting reduction or minimizing the pollution resulting from casting operation as principal target, the research will follow tow important directions; the first one is the best planning for the casting process to guarantee the optimistic method for casting operation and also ensure minimum material and power consumption at minimum time of production. The second direction is the following of the up to date methods of quality control, to ensure the best accepted casted product from the first melting process.

In going to reduction of materials and controlling the quality of materials, machines and products, the research will not neglect the effect of computer aid and the quality of human beings dealing with casting technology, taking in consideration that best product is closely related to skill and good trained labour, supervisor and highly qualified manager.

Avoiding all negative factors of casting industry in connection to the environment and supporting all positive ones, casting industry can be considered as the best method for reusing of great quantities of metallic scrap all over the world and not a dangerous cause of environmental pollution.

Acknowledgement

To my respected supervisors **Prof. Dr/ Nahed Sobhy** and **Prof. Dr/ Nabil Abd El-Moneim** for guiding me to the best way for preparing this research, Then to **Dr.Magda Karam**, Institute of Environmental Studies and Research and finally to my family for supporting me in this Scientific step.

Table of Contents

	Page
Abstract	i
Acknowledgement	ii
Table of Contents	iii
List of tables	vi
List of figures	viii
List of abbreviations and Nomenclature	X
Chapter 1 : Introduction ,Problem ,Target and Procedure	
1.1. introduction	1
1.2. The problem	2
1.3. Target	3
1.4. procedure	3
Chapter 2 : Main Metals used in foundries	
2.1. Introduction	5
2.2. Copper	6
2.3. Iron	7
2.4. Aluminum	11
2.5. Conclusion	13
Chapter 3 : Casting process	
3.1. Impact effect of Casting process on the environment	15
3.2. Illustration of different types of casting process and its	
different activities.	17
3.3. Analysis of chemical and physical inputs and outputs at	
different steps of casting process.	25
3.4. Small foundry environment system.	25
Chapter 4 : Planning of casting industry	
4.1. Materials Factor.	33
4.2. Human Power Factor.	36

	Page
4.3. Capital (Money) Factor.	37
4.4. Method of production or planning of the casting process	37
4.4.1. Selection of the kind of casting process.	37
4.4.2. Design for casting process.	40
4.4.3. Selecting the best manufacturing elements for the	
components of the predetermined casting process.	46
4.4.4. Planning for quality control of casting process.	89
 Principal factors affecting and controlling planning of 	
casting process for being cleaner casting technology.	
 Modern casting technologies. 	97
Chapter 5 : Quality Control	
5.1. Introduction	100
5.2. Definition	101
5.3. Evolution of quality control.	101
5.4. Quality control for casting industry.	117
5.4.1. Production-machines and testing equipments quality	
control.	112
5.4.2. Man power quality control.	112
5.4.3. Material and production quality control.	114
A: Purchased materials and component parts quality	
control.	114
B: Production quality control	116
•Defects of castings (Nature, Causes and remedy)	116
 Product testing procedure 	140
1- Shape and dimensions.	141
2- Surface quality and finish.	141
3- Composition and mechanical properties.	142
4 - (A) Methods of non destructive testing.	146

	Page
4- (B) Methods of Proof loading and pressure testing.	156
 Quality and process control in foundry. 	156
 Repairing of defected castings. 	160
5.4.4. Environmental protection, health and safety (Environment	
quality control)	164
Chapter 6: Calculation and practical part	
6.1. Field visits to different foundries	176
6.2. Computer data	178
6.3. Case Studies.	179
6.3.1. First Case Study	179
- (Suggested air pollution control unit design)	182
- Calculations.	184
6.3.2. Second Case Study	189
(Comparison between two foundries).	
- Calculations.	190
Chapter 7: Conclusion ,Comment and Recommendations	193
References	197
Arabic Summary	

List of Tables

	page
Table of contents	i
List of tables	vi
List of figures	vii
List of Abbreviations and Nomenclature	X
Table (2.1) Input and output of the blast furnace	10
Table (4.1) Comparison of casting processes	39
Table (4.2) Name of metal and character of spark.	52
Table (4.3) kind of metal, its melting point, maximum strength and its acceptance for reusable mould.	90
Table (4.4) Property improvements in Bars casted by counter- gravity	
compared with others casted by gravity pouring.	95
Table (5.1) solid contraction of some metals.	133
Table (5.2) Amount of shrinkage allowance for different metal alloys.	136
Table (5.3) Different Gamma ray sources, its equivalent x – ray voltage illustrating its corresponding half life and its applications.	152
Table (5.4) Guidance notes for different casting processes.	171
Table (5.5) Examples of typical end of pipe pollution treatment.	173
Table (6.1) Material, parts and cost of suggested foundry air control unit.	188
Table (6.2) Practical field comparison between two foundries working with two different technologies	191

List of Figures

	page
Figure (2 – 1) Percentages of the main elements found in earth's crust	6
Figure (2 – 2) Reverberatory Furnace	8
Figure $(2-3)$ Blast furnace main parts and chemical reactions of the smelting process.	11
Figure (2 – 4) Aluminum production by electric analysis	15
Figure $(3-1)$. The principal steps in making a mould for sand casting	23
Figure $(3-2)$ Diagrammatic sketch of a permanent-mould casting equipment.	25
Figure (3-3) Schematic representation of a horizontal centrifugal casting machine.	27
Figure (3-4) System analysis of moulding and core making in small foundries,	29
indicating chemical and physical inputs and out puts	
Figure (3-5) System analysis of melting process in small cast iron foundries indicating	20
chemical and physical inputs and outputs	30
Figure(3-6) System analysis of melting process in small aluminum foundries indicating	21
chemical and physical inputs and outputs	31
Figure(3-7) System analysis of melting process in small copper/brass foundries	22
indicating chemical and physical inputs and outputs	32
Figure(3-8) System analysis of pouring station in small foundries indicating chemical	33
and physical inputs and outputs	33
Figure(3-9) System analysis of shakeout and finishing area in small foundries	2.4
indicating chemical and physical inputs and outputs	34
Figure(3-10) The global small foundry environment – system	35
Figure (4 – 1) Overall input and output of casting industry	39
Figure (4 – 2)Schematic Diagram of Overall Foundry Using Sand Casting Process	46
Figure (4 – 3) Schematic Diagram of Overall Foundry Using Gravity Pressure Die	47
Casting process and Centrifugal Casting.	4/

Figure (4 – 4) Proposed lay out sand and gravity die casting foundry	49
Figure (4 – 5) Proposed segregation flow chart plan	55
Figure (4-6) Different forms and shapes of spark for the different kinds of metals mentioned in table (4.2)	59
Figure (4 – 7) The cupola furnace	65
Figure (4 – 8) D. B. cupola furnace	69
Figure $(4-9)$ The new computer process model for cupola furnace.	74
Figure $(4 - 10)$ Experimental cupola drawing showing the controlled variables at every inlet and outlet (US department of energy).	74
Figure (4 – 11) Cokeless cupola furnace	76
Figure (4-12)(a) Crucible Gas furnace (telting),(b)Stationary Crucible Gas furnace	78
Figure (4 – 13)(a)Crucible tongs ,(b)Crucible shank	78
Figure (4 – 14) Four heaters electric resistance furnace	80
Figure (4 – 15) Electric Arc Furnace	81
Figure (4 – 16) Induction furnace	82
Figure $(4 - 17)$: Automatic moulding and pouring casting line systems	87
Figure $(4 - 18)$: The two halves of match plate used in automatic jolting for sand casting.	88
Figure (4 – 19) Sand crusher	91
Figure $(4-20)$ Unit for mixing and preparing moulding sand	92
Figure $(4-21)$ Steps of the counter gravity casting process	98
Figure $(4-22)$ Counter gravity tree connected to great number of patterns	99
Figure $(4-23)$ Example of an ingot casting machine system showing (a) the casting wheel and (b) the ingots at the bottom.	102
Figure (4 – 24)Base case wheel design used in the industry.	102
Fig (5-1) the Evolution and Expansion of Quality Control circles, in connection to suggested foundry quality circles.	107
Fig(5-2)Diagram of Quality System emphasizing feedback	116

in figure (5-3) Molten alumina filtration diagram	127
Figure(5.4) Liquid metals vacuum degassing a)static bath, b)induction degassing, c)fractional degassing	134
Figure (5.5) d)stream droplet vacuum degassing [continued to figure(5-4)	135
Fig(5-6) Aluminum alloy gas relationship between density and solidification pressure.	136
figure (5-7) Different forms of shrinkage defects.	138
Figure (5-8)Typical design features giving rise to contraction stresses	140
Figure (5-9)Schematic drawings showing different shapes of castings divided on the four groups of contraction (a),(b),(c)and (d)	142
Figure (5-10) Stress concentration at discontinuities (a)and (b)	144
Figure (5-11) Diagram showing the average centre line of the surface profile	148
Figure(5-12)Examples of test bars as round blanks or shaped close to finished dimensions .	150
Figure(5-13) Different methods for magnetic crack detection (a),(b),(c)and (d)	155
Figure (5.14)Production of radiographic image on film.	156
Figure (5-15) Effect of tube voltage and filament current.	157
Figure (5-16)pentameter used for determining the radiographic process sensitivity.	159
Figure (5-17) Ultra sonic testing (schematic); (a),(b),(c) and (d)	161
Figure (5-18) Typical ultra sonic traces (a) from sound metal, (b) from section containing a single defect.	161
Figure(5-19) Normal frequency distribution of measurements	164
Figure (5-20) Process control chart for product characteristic.	165
Figure (5-21) Metal arc welding using coated electrode.	167
figure (5-22) Loop model for environmental management.	171
Figure (6-1) Cooling and solving unit (Suggested foundry air control-unit)	192

List of Abbreviations & Nomenclature

DBC Divided Blast Cupola

CI Cast Iron

TQC Total Quality Control

ANSI American National Standard Institute

ISO International Standard Organization.

QC Quality Control

BSI British Standard Institution

ASTM American Society for Testing material.

IPC Integral Pollution Control

LAPC Local Air Pollution Control

VOC Volatile Organic Compounds

3 Media Environment 3 Mediums (Air, Water and Land)

3D Three Dimensions

SPH Smoothed Particle Hydrodynamics

SPM Suspended Particulate Materials

PH Indication for the degree of acidity

PSC Process Sensing Control

CFD Computational Fluid Dynamics

Chapter 1

Introduction, Problem , Target and Procedure

1.1 Introduction:

Casting industry is the second technology in the USA after electronic industry. It gains its importance from that 80% of the metallic spare parts in different machines are born for the first time in the foundry, then different machining processes, if required, are done to get the end product.

In Egypt, same as USA, casting process is also an important industry in spite of the conventional traditional technologies adopted in medium, small and large foundries, which use different kinds of furnaces and different processes for production, where some of them agree and have friendly effect on the environment, and most of them do not agree and have a very bad effect on the environment.

Casting process technique is defined as a way for producing products through the following steps:

- 1. Melting the metal by raising its temperature to the melting point using different kinds of furnaces, then to exceed the melting point by about 100°C to sustain and keep the metal in its liquid state till reaching the mold.
- 2. At the same time and parallel to the above step, a mould with a cavity taking the shape of the wanted product is prepared. The kind of the mould differs according to the kind of casting process and also according to the shape of the product.
- **3.** Transmitting the molten metal in a ladle from the furnace to the mould.
- **4.** Pouring the liquid metal in the prepared mould. The molten metal will penetrate through the cavity filling the space and rejecting the air, thus taking the shape of this cavity.
- **5.** Waiting the molten metal to solidify.
- **6.** Trimming and getting rid of the excess parts (Sprue, riser, flashes), then finishing the product.

For this process to be achieved, the foundry must be planned to include the following:

- 1. Scrap yard to prepare the correct charge for the furnace.
- **2.** Furnaces yard where the metal is melted.
- **3.** Moulding yard to prepare the mould (Sand mould, die mould, investment mould, ...)
- **4.** Means for transporting the molten metal from the furnace yard to the mould yard, then pouring it in the prepared mould.
- **5.** Means to extract the product from the mold.
- **6.** Compressed air and sand blast to clean the semi finished product coming from the mold.
- 7. Machines department, containing metal cutting machines and carpentry machines, for maintaining foundry equipments and making wood patterns.
- **8.** Testing of material and quality control department for analyzing the charge constitution, before entering the furnace and analyzing molten metal elements after leaving the furnace, and checking the products to be sure that they are free from defects.

1.2 The problem

Casting process is an important production process for the industrial sector, In spite of its shining side, it has a bad side represented by its effect on the environment resulting from the hazardous effect of emitted gases (Carbon oxides, sulfur oxides, Nitrogen oxides, and other heavy metal oxides) on the human beings living in this environment. In addition to the amount of heat emitted from the surface of the molten metal added to the heat and gases emitted from burned fossil fuel used in melting this metal. It is also important to take into consideration the slag & ashes lift from the face of the molten

metal and its impact effect on the environment when getting rid of it in the earth

1.3 Target

Since the casting process has many positive sides related to the development of the industry of any country, and being one of the most practical method for recycling metallic scrap, it has also many negative sides represented in its severe pollution of the environment (both indoor and out door).

This research will deal directly with how to increase the positive effects of the casting process, and in the same time decreasing its negative effects on the environment.

1.4 Procedure

The research followed two directions to achieve the research objectives:

First Direction: Theoretical study which includes:

- Illustration of the three fundamental industrial metals used in foundries: Copper, Steel and Aluminum; its sources, its methods of extraction, their properties, and their industrial use.
- Illustration of the different activities and different types of casting processes for choosing the best preferable one relative to a certain product.
- Planning for optimizing the casting process.
- Illustration of modern systems for casting quality control.
- Adoption of environmental planning and quality control.

Second direction: Practical study which includes:

• Mathematical calculations, supporting the positive action of the casting process on the environment.