URINARY TRANSFORMING GROWTH FACTOR-BETA 1 AND ALPHA 1-MICROGLOBUIN IN CHILDREN AND ADOLESCENTS WITH TYPE-1 DIABTES

Thesis
Submitted for Partial Fulfillment of
Master Degree in pediatrics medicine

BY

Nesreen Ahmed Mahmoud M.B.,B.Ch. Misr International University For Scince And Technology – July(2002)

Supervised by

Prof. Nagham Mohamed Samy El-Beblawy

Professor of Pediatrics Medicine Faculty of Medicine - Ain Shams University

Dr. Amira Abd El-Monem Adly

Lecturer of Pediatrics Medicine Faculty of Medicine - Ain Shams University

Dr Amal Ahmed Abbas

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2007

عامل النمو المحول البولى بيتا 1 والمايكروجلوبيولين الفا1 في الاطفال والمراهقين المصابين بداء السكري

رسالة عملية توطئة للحصول على درجة الماجستير في طب الاطفال مقدمة منن

ست سس الطبيب/ نسرين أحمد محمود الطبيب/ نسرين أحمد محمود بكالوريوس الطب والجراحة جامعة مصر للعلوم والتكنولوجيا يوليو 2002

تحت إشراف

أد/ نغم محمد سامي الببلاوي

أستاذ الأطفال ـ كلية الطب - جامعة عين شمس

د/أميرة عبد المنعم عدلى

مدرس الأطفال ـ كلية الطب - جامعة عين شمس

د/ أمل أحمد عباس

مدرس الباثولوجيا الاكلينكية - كلية الطب - جامعة عين شمس

كلية الطب ـ جامعة عين شمس 2007

Contents

	Page
INTRODUCTION	1
AIM OF THE WORK	5
REVIEW OF LITERATURE:	
Type 1 Diabetes Mellitus	6
Diabetic Nephropathy	46
Transforming Growth Factor Beta	76
Alpha-1 Microglobulin	87
PATIENTS AND METHODS	93
RESULTS	115
DISCUSSION	145
SUMMARY AND CONCLUSION	160
RECOMMENDATIONS	164
REFERENCES	165
ARABIC SUMMARY	

List of Tables

Table	Title	Page		
No.				
1	Official criteria for the diagnosis of DM	8		
2	Some features of impaired glucose tolerance and/or			
	impaired fasting glucose	9		
3	Aetiological classification of DM	10		
4	Complications of type 1 diabetes	26		
5	Some causes of inadequate metabolic control in type 1			
	diabetes	28		
6	Comparison between the studied groups as regards the			
	demographic data and clinical data	116		
7	Comparison between the studied groups as regards			
	their metabolic control	118		
8	Comparison between Normoalbuminuric diabetic			
	patients versus controls as regard TGF beta 1 levels	121		
9	Comparison between microalbuminuric diabetic patients			
	versus controls as regard TGF beta 1 levels	123		
10	Comparison between the normoalbuminuric and			
	microalbuminuric diabetic patients as regards urinary			
	TGF beta 1 level	125		
11	Comparison between normoalbuminuric diabetic			
	patients and the controls group as regards urinary	100		
10	microglobulin alpha-1 level	126		
12	Comparison between the microalbuminuric diabetic			
	patients and the controls group as regards urinary	107		
13	Microglobulin alpha-1 level	127		
13	Comparison between the normoalbuminuric and the microalbuminuric diabetic patients as regard urinary			
	Microglobulin alpha-1 level	128		
14	Correlation between urinary TGF beta-1 level versus	120		
14	laboratory data among microalbuminuric diabetic			
	patients	130		
15	Correlation between urinary TGF beta-1 level versus	150		
13	laboratory data among normoalbuminuric diabetic			
	patients	131		
	Continued	101		

Table No.	Title
16	Correlation between urinary TGF beta-1 level versus urinary microglobulin alpha-1 level among controls group
17	Correlation between urinary TGF beta-1 level and demographic and clinical data among microalbuminuric diabetic patients
18	Correlation between urinary TGF beta-1 level and age, disease duration, weight, height and BP among normoalbuminuric diabetic patients
19	Correlation between urinary microglobulin alpha-1 level and parameters of metabolic control among microalbuminuric diabetic patients
20	Correlation between urinary microglobulin alpha-1 level and the parameters of diabetic control among normoalbuminuric diabetic patients
21	Correlation between urinary microglobulin alpha-1 level and age, weight, height and BP among the studied diabetic patients
22	Correlation between urinary microglobulin alpha-1level versus age, weight, height and BP among the controls group
23	Correlation between urinary Microglobulin alpha-1 level and urinary TBG beta-1 level versus gender of diabetic patients
24	Correlation between urinary Microglobulin alpha-1 level and urinary TBG beta-1 level versus gender of
25	Correlation between urinary Microglobulin alpha-1 level and urinary TBG beta-1 level versus diabetic
26	ketoacidosis attacks among diabetic patients Sensitivity, specificity, PPV and NPV of the studied markers for prediction of early renal affection among
	diabetic patients

List of Figures

Fig.			
Vo. 1	Comparison between the studied groups as regards blood pressure	117	
2	Comparison between the studied groups as regards mean in insulin dosage and mean HBA1c	119	
3	Comparison between the studied groups as regards the mean RBS		
4	Comparison between TGF beta 1 level in urine of normoalbuminoric diabetic patients and the control group	122	
5	Comparison between TGF beta 1 level in urine of normoalbuminoric diabetic patients and the control group	124	
6	Comparison between Microglobulin Alpha 1 level in urine among the studied groups		
7	Receiver operator characteristic curve (ROC) for detection of the best cut off value and area under the curve for TGF beta 1 level in urine in prediction of early		
8	renal affection among diabetic patients	142	
	cases	143	

<u>List of Abbreviations</u>

ACE	Angiotensin Converting Enzyme		
ACR	Albumin Creatinine Ratio		
ARBs	angiotensin II type 1-receptor blockers		
BMP	• • • • • • • • • • • • • • • • • • • •		
CD	Cluster of differentiation		
COOPERATE	Combination Treatment of Angiotensin-II		
	Receptor Blocker and Angiotensin-Converting-		
	Enzyme Inhibitor in Nondiabetic Renal Disease		
CTLA	cytotoxic T lymphocyte antigen		
DCCT	The Diabetes control and Complications Trial		
DIDMOAD	Diabetes insipidus, diabetes mellitus, optic		
syndrome	atrophy, deafness		
DM			
DPT-1	The Diabetes Prevention Trial – type 1		
ELISA	j j		
ENDIT	1		
	Trial		
EURODIAB	European Diabetes		
FPG	Fasting plasma glucose		
GAD	glutamic acid decarboxylase		
GFR	Glomerular Filteration Rate		
Hb	Hemoglobin		
HBV	Hepatits B Virus		
HCV	Hepatits C Virus		
HIV	Human Immuno-diffieciency Virus		
HLA	Human leukocyte antigen		
HOT	Hypertension Optimal Treatment		
IDDM	Insulin dependent Diabetes Mellitus		
IFG	Impaired fasting glucose		
IGT	Impaired glucose tolerance		
LAP	latency-associated peptide		

Continued

LDL	Low density lipoprotein
LLC	large latent complex

LTBP...... latent TGF-ß binding protein LTBP..... latent TGF- 1 binding protein

MDRD...... Modification of Diet in Renal Disease Trial MICRO-HOPE..... Heart Outcomes Prevention Evaluation

NIDDM...... Non insulin dependent Diabetes Mellitus

OGTT...... Oral glucose tolerance test
RAS..... Renin angiotensin system
RBP.... Retinol binding protein

SP..... signal peptide

TGF...... Transforming growth factor UAE...... Urinary albumin excretion

UKPDS...... United Kingdom prospective diabetes study

ntroduction

Introduction

Diabetic nephropathy is the leading cause of kidney disease in patients starting renal replacement therapy and affects ~40% of type 1 and type 2 diabetic patients. It increases the risk of death, mainly from cardiovascular causes, and is defined by increased urinary albumin excretion (UAE) in the absence of other renal diseases. Diabetic nephropathy is categorized into stages: microalbuminuria (UAE >20 µg/min and ≤199 µg/min) and macroalbuminuria (UAE ≥200 µg/min). Hyperglycemia, increased blood pressure levels, and genetic predisposition are the main risk factors for the development of diabetic nephropathy. Elevated serum lipids, smoking habits, and the amount and origin of dietary protein also seem to play a role as risk factors. (*Jorge L. et al.*, 2005).

Screening for microalbuminuria should be performed yearly, starting 5 years after diagnosis in type 1 diabetes or earlier in the presence of puberty or poor metabolic control. In patients with type 2 diabetes, screening should be performed at diagnosis and yearly thereafter. Patients with micro- and macroalbuminuria should undergo an evaluation regarding the presence of comorbid associations, especially retinopathy and macrovascular disease. Achieving the best metabolic control (A1c <7%), treating hypertension (<130/80 mmHg or <125/75 mmHg if proteinuria >1.0 g/24 h and increased serum creatinine), using drugs with blockade effect on the reninangiotensin-aldosterone system, and treating dyslipidemia (LDL cholesterol <100 mg/dl) are effective strategies for preventing the development of microalbuminuria, in delaying

the progression to more advanced stages of nephropathy and in reducing cardiovascular mortality in patients with type 1 and type 2 diabetes (*Jorge L. et al.*, 2005).

Improvements in glycemic control and the greater use of antihypertensive therapy should eventually have a beneficial impact on the incidence of severe nephropathy in type 1 diabetes. However, early disease, such as microalbuminuria and macroalbuminuria, will continue to occur because glycemic control cannot wholly prevent the progression of albuminuria, and there is currently little evidence that antihypertensive use in normotensive normoalbuminuric patients is of clinical value. Both microalbuminuria and macroalbuminuria significantly increase the risk of morbidity and mortality from coronary heart disease and are strong predictors of subsequent severe renal disease. Prevention of the early stages of diabetic renal disease and reduction in progression should now be priorities, but these steps require a more complete understanding of the etiology to identify suitable targets for intervention (Nish C. et al., 2002)

Diabetic nephropathy is characterized by hypertrophy of the glomerular and tubuloepithelial structures and thickening of the glomerular and tubular basement membrane, due largely to the effects of hyperglycemia . The cytokine transforming growth factor (TGF)-\(\beta\)1 appears to be a key mediator for these changes . TGF-\(\beta\)1 expression is enhanced in the presence of diabetes, either as a direct consequence of hyperglycemia or indirectly via the formation of early or advanced glycation end products . Hyperglycemia stimulates condensation reactions

between glucose and proteins, and an early product of this reaction is an Amadori protein (*Nish C. et al.*, 2002).

Transforming growth factor- 1 (TGF- 1) is a potent multifunctional polypeptide that is involved in normal renal function and in the development of glomerular sclerosis. It is also an important mediator of the immune and anti-inflammatory responses (*Pierina De Muro.*, 2004).

TGF- represents a group of 25-kD proteins that are actively involved in the development and differentiation of various tissues and in the healing process after a tissue injury. Three isoforms of TGF- have been identified in mammalian species and TGF- 1 is the most commonly found in humans. Normally, TGF- 1 release ceases by feedback mechanisms when the healing process has been completed. However, if TGF- 1 release is not switched off, extracellular matrix components (ECM) are accumulated and tissue fibrosis occurs . TGF- 1 is involved in the development of scarring in crescentic nephritis via activation of myofibroblasts from glomerular parietal epithelial cells. Interstitial myofibroblasts also contribute to the development of fibrous crescents through their migration into the Bowman's space of glomeruli with disrupted capsules. The implication of TGF- 1is further supported by the observation of amelioration of histologic damage in experimentally induced anti-GBM nephritis with the blockade of TGF- 1 action (Dimitrios S Goumenos et al., 2005).

Since the discovery of the central role of transforming growth factor (TGF)- in fibrotic kidney disease, urinary TGF-

activity has been studied in experimental models of kidney disease together with renal TGF- mRNA and protein expression, and indexes of fibrosis. A simultaneous increase in urinary TGF-and glomerular TGF- mRNA and protein was observed in a rabbit model of an antibody- mediated crescentic nephritis. In people with various glomerular diseases, urinary TGF-_ correlated with the grade of interstitial fibrosis. In patients with membranous glomerulonephritis, urinary TGF- 1 at baseline was lower in those patients who later reached remission than in patients whose disease had a more progressive course. In type 2 diabetic patients, urinary TGF-_1 is elevated and associated with histologically proven severe mesangial expansion (*Korpinen E. et al.*, 2000).

Alm of the Work

AIM OF THE WORK

The aim of our work is study the urinary TGF- 1 excretion in children and adolescents with type-1 diabetes and its relation with the 2 conventional markers of glomerular and tubular injury; urinary albumin and 1-microglobulin. Also to assess the relation between urinary TGF- 1 excretion with parameters of glycemic control as HbA1c.