

The Frequency Of Visual Impairment In Children Attending The Out- Patient Clinic Of Ain Shams University Hospital Due To Different Ocular Conditions

thesis

Submitted for the Fulfillment of the Master Degree in Ophthalmology
Presented by

Hayder Mohammed Ali Sahib

M.B.Ch.B.- Babylon University

Under Supervision of

Prof. Dr. Dina Ezzat Abd Al Azeez

Professor of Ophthalmology
Faculty of Medicine - Ain Shams University

Prof. Dr. Abd Alrahman Jaber Salman

Professor of ophthalmology
Faculty of Medicine - Ain Shams University

Dr. Maha Mohamed Ibrahim

Lecturer of Ophthalmology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University Cairo/2016

وتيرة ضعف الأبصار لدى الأطفال المترددين على العيادة الخارجية لمستشفى جامعة عين شمس بسبب أمراض العيون المختلفة رسالة بحثية

توطئة للحصول على درجة الماجستير في طب وجراحة العيون

مقدمة من

الطبيب / حيدر محمد علي صاحب

بكالوريوس طب وجراحة عامة - جامعة بابل

تحت إشراف

أ.د./ دينا عزت عبد العزيز

أستاذ طب وجراحة العيون

كلية الطب - جامعة عين شمس

أ.د./ عبد الرحمن جابر سالمان

أستاذ طب وجراحة العيون

كلية الطب – جامعة عين شمس

د./ مها محمد ابراهیم

مدرس طب وجراحة العيون

كلية الطب - جامعة عين شمس

كلية الطب

جامعة عين شمس

القاهرة ٢٠١٦

سورة البقرة الآية: ٣٢

First thanks to ALLAH to whom I relate any success in achieving any work in my life.

I would like to extend my deep gratitude and thanks to Professor Dr. Dina Ezzat Abd Al Azeez Professor of Ophthalmology in Ain Shams University for her immeasurable patience and continuous encouragement during the preparation of this work.

My inexpressible thanks to Professor Dr. Abd Alrahman Jaber Salman, Professor of Ophthalmology in Ain Shams University for his objective help and valuable remarks throughout this study.

I would like to express my extreme gratitude to **Dr.**Maha Mohamed Ibrahim, Lecturer of Ophthalmology in

Ain Shams University for her meticulous supervision and

invaluable emendation, advice and guidance during the

course of this study.

Last but not least I would like to say a special thank you to My Dear Family for their helpful support and assistance.

Contents

Subjects	Page
List of abbreviations.	I
List of tables.	II
List of figures.	IV
Introduction.	1
Aim of the work.	6
Review of literature.	
Visual impairment:	7
Causes of visual impairment in children:	13
 Refractive errors. 	13
 Amblyopia. 	29
• Strabismus.	33
Congenital anomalies:	37
Patients and methods.	69
Results.	76
Discussion.	107
Conclusion.	118
Recommendations.	119
Summery.	120
References.	123
Arabic summery.	-

List of Abbreviations

1ry Primary

2ry Secondary

3rd Third

BL Blind

BSV Binocular Single Vision

C/D Cup/Disc Ratio

D Diopter

D.Cyl. Diopter Cylinder

D.Sph Diopter Sphere

e.g. Example

hge. Hemorrhage

IOFB Intraocular Foreign Body

IOP Intraocular Pressure

IPD Interpupillary Distance

MPC Mucopurulent Conjunctivitis

POAG Primary Open Angle Glaucoma

RD Retinal Detachment

ROP Retinopathy Of Prematurity

RPE Retinal Pigment Epithelium

SD Spherical Diopter

SE Spherical Equivalent

Sec. Seconds

SVI Severe Visual Impairment

WHO World Health Organization

List of Tables

Tab. NO	Table	Page
1	WHO categories of visual impairment	7
2	Categories of severity of visual impairment according to	8
	the International Statistical Classification of Diseases	0
3	Prevalence of blindness and severe visual impairment in children in different countries	9
4	Prevalence of visual impairment due to RE in schools	23
5	Sex distribution among the examined children	79
6	Age distribution among the examined children	80
7	Distribution of eye diseases among the examined children	81
8	male/female distribution among ocular disorder children	82
9	Visual impaired to normal vision children	83
10	causes of visual impairment	84
11	Best corrected visual acuity among children	85
12	Distribution of refractive errors among the studied children	86
13	Age distribution of children with refractive errors	87
14	Sex distribution of children with refractive errors	88
15	Distribution of the refractive error types	89
16	Distribution of amblyopia among the studied children	92
17	Prevalence of amblyopia in correlation to age	93
18	Prevalence of amblyopia in correlation to sex.	94
19	Distribution of strabismus among the studied children	95
20	Age distribution of strabismus among the studied children	96
21	Sex distribution of strabismus among the studied children	97
22	Distribution of ocular surface diseases among the studied children	98
23	Distribution of congenital anomalies among the studied children	99
24	Age distribution of children with lens-related visual impairment.	100
25	Distribution of other eye diseases among the studied children	100
26	correlation between Parental education level and children eye diseases	101
27	correlation between Parental occupational level and children eye diseases	102

∠List of Tables

Tab.	Table	Page
28	Distribution of ocular disorder cases and normal children	103
20	according to their socioeconomic factors	
29	Distribution of ocular disorder cases and normal children	104
29	according to health care behavior risk factors	
30	Distribution of ocular disorder cases and normal children	106
30	according to personal characteristic risk factors.	

List of Figures

	Fig. No	Figure	Page
ľ	1	Myopia	20
İ	2	Hyperopia	21
İ	3	Astigmatism	21
	4	Clear vision by normal eye versus blurry vision by lazy	30
ļ		eye	22
ļ	5	Strabismus: Generic Classification	33
ļ	6	Exotropia	37
L	7	Esotropia	37
ļ	8	Fully accommodative esotropia	38
ļ	9	Partially accommodative esotropia	38
L	10	Congenital glaucoma	41
L	11	Infantile glaucoma	41
L	12	Glaucomatous optic nerve 0.9(C/D) ratio	43
L	13	Glaucomatous optic nerve flamed shape hemorrhage	43
L	14	Anterior polar cataract	46
ļ	15	Posterior subcapsular cataract	46
ļ	16	Lamellar cataract	47
L	17	Rubella cataract	49
L	18	Snow flake cataract - In DM	52
L	19	Oil droplet cataract in galactosemia	52
L	20	Sclerocornea	56
L	21	Microcornea	56
	22	Lenticonus	57
	23	Lens coloboma	58
	24	Ectopia lentis with corectopia	58
	25	Iris heterochromia	60
	26	Congenital aniridia	60
	27	Optic nerve hypoplasia	61
	28	Optic disc drusen	62
	29	Optic nerve pit	62
	30	Optic disc coloboma	62
ſ	31	Persistent hyaloid artery	63
ľ	32	Arteriovenous malformation (AVM)	64
ľ	33	Coats' disease	64
ľ	34	Inactive toxoplasmosis	64
ľ	35	Cone-rod dystrophy	65
ľ	36	Myelinated nerve fibers	65

List of Figures

Fig. No	Figure	Page
37	Binocular movements evaluation	72
38	The corneal light reflex test	73
39	Cover tests	74
40	Sex distribution among the examined children	79
41	Age distribution among the examined children	80
42	Distribution of eye diseases among the studied children	81
43	Male/female distribution among ocular diseased children	82
44	Visual impaired to normal vision children	83
45	causes of visual impairment	84
46	Best corrected visual acuity among examined children	85
47	Distribution of refractive errors among the studied children	86
48	Age distribution of children with refractive errors	87
49	sex distribution of children with refractive errors	88
50	Distribution of myopia.	90
51	Distribution of hypermetropia	90
52	Distribution of astigmatism	91
53	Distribution of amblyopia among the studied children	92
54	Age distribution of amblyopia among the studied children	93
55	sex distribution of amblyopia among the studied children	94
56	Distribution among the studied children	95
57	Age distribution of strabismus among the studied children	96
58	sex distribution of strabismus among the studied children	97
59	Distribution of ocular surface diseases among the studied children	98
60	Distribution of congenital anomalies among the studied children	99
61	correlation between Parental education level and children eye diseases	101
62	correlation between Parental occupational level and children eye diseases	102

Abstract

Childhood vision disorders are prevalent and are a significant public health problem. Early identification, diagnosis and correction of children's vision disorders are essential parts of all child health programs. The early detection and treatment of vision disorders give the visual system and brain an opportunity to develop normally by preventing permanent vision loss; thus giving children a better opportunity to develop educationally, socially and emotionally.

A study of the patterns of ocular diseases in children is very important because, while some eye conditions are just causes of ocular morbidity, others invariably lead to blindness. Also while some conditions such as refractive errors and cataract are treatable others like measles and vitamin A deficiency are largely preventable.

There are few data available on the prevalence and types of refractive errors, strabismus, amblyopia, lens-related visual impairment and ocular malformation in children in developing countries. Therefore, the magnitude of the problem needs a systematic assessment. That, early ocular assessment of children can facilitate correction of ocular morbidity of the victims.

Visual impairment is a major public health concern. In order to help nations combat visual impairment, it is important to determine the specific aetiologies by region.

This will enable each nation to better understand its specific needs, and better ensure that appropriate resources are efficiently allocated for prevention and treatment.

We conducted this study to determine avoidable causes of childhood blindness and visual impairment so that a nationwide intervention can be planned.

403 children had been included in this study aged 4 to 14 years, 175 (43%) were males while 228 (57%) were females children.

Once a child was enrolled full detailed history had been taken, medical history, presence of other disabilities, previous eye surgery and eye examination was performed, including: visual acuity, pupils, extraocular motility, intraocular pressure with Goldmann applanation tonometer as necessary, anterior segment examination by handheld light or slit lamp and dilation of eyes for cycloplegic refraction by retinoscopy and Fundoscopic examination with a direct or indirect ophthalmoscope. For dilation, cyclopentolate hydrochloride 1% was instilled in all children.

We found that 66 children (16.50% of the total 403 children) were visually impaired (had best corrected visual

acuity less than 6/18). While the other 337 children (83.50%) had normal vision (BCVA between 6/6 and 6/18).

Of those 66 visual impaired children, refractive errors were the major cause of the impairment (41 children 62% of total impaired children) then amblyopia (10 children=15%) and strabismus (6 children= 9%) and other causes such as cataract, trauma, trachoma and congenital issues (9 children=14%).

In the other hand, we found that 30% of the studied children had eye diseases. The most important eye diseases were refractive errors 105 (26.25%) of overall 403 participated children, ocular surface diseases 57 (14.25%), amblyopia 20 (5%), strabismus 11 (2.75%), congenital anomalies 4 (1%), lens-related visual impairment 2 (0.75%) and other different ocular diseases 12 (3%) including blepharitis, chalazion, stye, lid ptosis.

All eye diseases were more common in low socioeconomic families. The most important significant risk factors were previous eye diseases, no early consultation for eye diseases, never received eye examination, low level of parental occupation, sibling(s) with eye diseases, last birth order child and female sex.

Introduction

Good vision is the key to a child's physical development, success in school and overall well-being. The vision system is not fully formed in babies and young children, and equal input from both eyes is necessary for the brain's vision centers to develop normally. If a young child's eye can not send clear images to the brain, his vision may become limited in ways that cannot be corrected later in life. But if problems are detected early, it is usually possible to treat them effectively (*Naidoo et al, 2012*).

Refractive error (RE) as: (myopia, hypermetropia and astigmatism) affect the whole spectrum of the population irrespective of age, gender, race and ethnic group. Such RE can be easily diagnosed, measured and corrected with glasses or other refractive corrections to attain normal vision. Uncorrected or under corrected RE have severe consequences for the individual, family and society. Previously significant attention has not been given to the contribution of refractive errors to global cause of visual impairment and blindness. This resulted from the realization that previous global estimates of blindness and visual impairment have underestimated the contribution of RE, because many definitions of blindness have been based on best-corrected distance visual acuity (*Egbe et al, 2010*).

Childhood vision disorders are prevalent and are a significant public health problem. Early identification, diagnosis and correction of children's vision disorders are essential parts of all child health programs. The early detection and treatment of vision disorders give the visual system and brain an opportunity to develop normally by preventing permanent vision loss; thus giving children a better opportunity to develop educationally, socially and emotionally (*Marshall et al*, 2010).

Variety of specific functions of the eye and the neurological control of these functions, such as eye teaming (binocularity), fine eye movements (important for efficient accommodation (focusing reading), and amplitude, accuracy and flexibility). Deficits of functional visual skills can cause blurred or double vision, eye strain and headaches that affect can learning. Convergence insufficiency is a specific type of functional vision problem that affects the ability of the two eyes to stay accurately and comfortably aligned during reading (Murphy and Heiting, *2010*).

A study of the pattern of ocular diseases in children is very important because, while some eye conditions are just causes of ocular morbidity, others invariably lead to blindness. Also while some conditions such as refractive errors and cataract are treatable others like measles and vitamin A deficiency are largely preventable. (*Deshpande et al.*,2011)