Shear Bond Strength of Resin Cement to Two Modern Nano Zirconia Materials with Different Surface Treatments

Thesis

Submitted for the partial fulfillment of the Master Degree requirements in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

By

Samer Roshdi Hassan Al-Sattari

B.D.S (Cairo University, 2010)

Faculty of dentistry

Ain Shms University

2016

Supervisors

Prof. Dr. Amina Mohamed Hamdy

Professor of fixed Prosthodontics
Faculty of Dentistry
Ain Shams University

Dr. Ayman Galal El Dimeery

Lecturer of fixed Prosthodontics
Faculty of Dentistry

Ain Shams University

بِسَمُ الْبَهُ الْبِي الْجَعِلَ الْجَعِيرَا الْجَعِلَ الْجَعِيرَا ا

سوره طه آیه رقم 114

Acknowledgement

First of all I would like to thank **ALLAH** for helping me to finish this work.

My deepest gratitude and sincere appreciation to *Prof. Dr.* Amina Mohamed Hamdy Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, for her sincere help, not only did she suggest the main theme of this study but also for guidance and motivation during the course of this study.

I would like to thank **Dr. Ayman Galal El Dimeery**, Lecturer of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, for his great help and tireless effort throughout this work.

My great thanks to the staff members and all my colleagues of the Fixed Prosthodontics department, Faculty of Dentistry, Ain Shams University, for their continuous help, encouragement and constant support.

Dedication

To my father & my mother, my best love of my life, who did care for me and gave me all kinds of kindness and to provide me all means in order to complete a master's degree.

To my brothers and sister, who offered me unconditional love and support throughout the course of the study.

To all my friends, that I have been fortunate enough to have been blessed with them.

To my friends Assem AL-Natsha and Ahmed Rabee who passed away, I dedicate this work to your soul

List of Contents

Title	Page
List of Contents	i
List of Tables	ii
List of Figures	iii
Introduction	1
Review of Literature	3
Statement of problem	32
Aim of the Study	33
Materials and Methods	34
Results	71
Discussion	89
Summary and Conclusion	97
References	102
Arabic Summary	_

List of Tables

No.	Title	Page
1	Materials' specification and composition	34
2	Composition of translucent zirconia (Bruxzir shaded)	35
3	Composition of ultra translucent zirconia (Bruxzir Anterior)	36
4	Bond strength test results (Mean±SD) for both groups as function surface treatment	72
5	Comparison of bond strength test results (Mean±SD) between <i>group I</i> and <i>group II</i> with different surface treatment <u>Subgroups</u> ranked from higher to lower	73
6	Comparison of total bond strength test results (Mean±SD) between <i>group I</i> and <i>group II</i>	75
7	Comparison of total bond strength test results (Mean±SD) between <i>different surface treatment design</i> subgroups	76
8	Comparison of bond strength test results (Mean±SD) between <i>group I</i> and <i>group II</i> with <i>Subgroup L</i>	77
9	Comparison of bond strength test results (Mean±SD) between <i>group I</i> and <i>group II</i> with <i>Subgroup S</i>	78
10	Comparison of bond strength test results (Mean±SD) between <i>group I</i> and <i>group II</i> with <i>Subgroup C</i>	79
11	Two way ANOVA statistics showing effect of each factor on bond strength test results	80

List of Figures

No.	Title	Page
1	Translucent zirconia blank	35
2	Ultra translucent zirconia blank	36
3	Rely X Ultimate clicker with single bond	37
4	Zirconia primer	38
5	Filtek Z350 XT composite	39
6	ISOMET 4000	42
7	Isomet blade cutting a Bruxzir zirconia blank	42
8	Ultra translucent zirconia plate separation	43
9	zirconia plates after separation, left ultra translucent zirconia, right translucent zirconia	43
10	ultra translucent zirconia plates with 1.23mm thickness before sintering	44
11	Ultrasonic cleaning of plates	44
12	Sintering of ultra translucent zirconia plates	45
13	Sintering furnace	45
14	zirconia plates after sintering, left translucent zirconia, right ultra translucent zirconia	46
15	translucent zirconia plate with 0.8mm thickness after sintering	46
16	Medical CO ₂ Laser System, SmartXide US20D	48
17	laser power adjusted to 3 watt and irradiation time of 120 seconds for zirconia plates	49
18	CO ₂ unit in stand by state for irradiation	49
19	Translucent Zirconia plate irradiated by CO ₂ laser	50

No.	Title	Page
20	Specially designed holder for the extra oral blaster unit (Cojet)	51
21	Cojet blaster	52
22	3M ESPE Cojet Sand, 30-μm, Germany	53
23	Silica coated for the Zirconia plate	53
24	Custom-made metal frame holding Zirconia plate during sandblasting	54
25	Basic classic sandblasting unit, Renfert	55
26	Cobra 50 μm, white, Renfert, Germany	55
27	2.5 bar pressure	56
28	Scan Electronic Microscopic machine, FEG FEI Company, Netherlands	57
29	samples inserted in the SEM	57
30	specially designed Teflon mold with metal ring	58
31	Parts of split Teflon mold	59
32	Woodpecker LED.D curing unit	60
33	packing the composite inside the mold	61
34	curing the composite	61
35	Sample of composite	62
36	zirconia plates treated by zirconia primer	63
37	Specially designed metal holder	64
38	Specially designed cementation device	65

No.	Title	Page
39	cementation kit	66
40	applied load to cement the samples	67
41	cemented specimens	67
42	Testing machine (Model LRX-plus; Lloyd	69
42	Instruments Ltd., Fareham, UK)	0,7
	Compressive mode of load applied at Zirconia-	
43	Composite interface using a mono-bevelled chisel	70
	shaped metallic rod	
44	Column chart of bond strength mean values for both	73
77	groups with different surface treatments	73
	Column chart of bond strength mean values	
45	comparing between $group I$ and $group II$ with	74
13	different surface treatment <u>Subgroups</u> ranked from	
	higher to lower	
	Column chart of total bond strength mean values	
46	comparing between <i>group I</i> and <i>group II</i>	75
	Column chart of total bond strength mean values	
47	comparing between different surface treatment	76
	design subgroups	
48	Column chart of bond strength mean values	
	comparing between group I and group II with	77
	Subgroup L	
49	Column chart of bond strength mean values	
	comparing between $group I$ and $group II$ with	78
	Subgroup S	

No.	Title	Page
50	Column chart of bond strength mean values comparing between <i>group I</i> and <i>group II</i> with <i>Subgroup C</i>	79
51	Representative SEM photograph of AL ₂ O ₃ sandblasted control group of translucent zirconia samples	81
52	Representative SEM photograph of AL ₂ O ₃ sandblasted control group of Ultra translucent zirconia samples	82
53	Representative SEM photograph of Silica Coated subgroup of translucent zirconia samples with evidence of silica crystals	83
54	Representative SEM photograph of Silica Coated subgroup of Ultra translucent zirconia samples with evidence of silica crystals	83
55	Representative SEM photograph of CO ₂ laser treated subgroup of translucent zirconia samples with evidence of microcracks	84
56	Representative SEM photograph of CO ₂ laser treated subgroup of Ultra translucent zirconia samples with evidence of microcracks	84
57	Debonded of AL_2O_3 sandblasting translucent zirconia sample with cement layer on > 70% of the surface, represented with dark gray color.	86
58	Debonded of AL_2O_3 sandblasting ultra translucent zirconia sample with cement layer on $> 60\%$ of the surface, represented with dark gray color.	86

No.	Title	Page
59	Debonded of CO_2 laser irradiated translucent zirconia sample with cement layer on $< 30\%$ of the surface, represented with dark gray color.	87
60	Debonded of CO ₂ laser irradiated ultra translucent zirconia sample with cement layer on < 30% of the surface, represented with dark gray color.	87
61	Debonded of Cojet silica coated translucent zirconia sample with cement layer on < 30% of the surface, represented with dark gray color.	88
62	Debonded of Cojet silica coated ultra translucent zirconia sample with cement layer on < 20% of the surface, represented with dark gray color.	88

Introduction

For many years the most predictable and durable esthetic correction of anterior teeth has been achieved by the preparation of complete crowns. With the increase in the aluminum oxide (Al₂O₃) content of feldspathic ceramics, there has been a significant improvement in the mechanical properties of these materials, allowing metal-free restorations to be used more predictably. One of the most commonly used all-ceramic materials for conventional and resin-bonded fixed partial dentures and complete coverage crowns is yttrium tetragonal zirconia.⁽¹⁾

The high mechanical properties of high content alumina and zirconia based ceramics make them attractive as potential materials for all-ceramics restorations in high stress-bearing areas. The use of Zirconia frameworks has gained popularity for long-span and extensive fixed dental prostheses. Zirconia is a densely sintered ceramic that offers chemically stable restorations with improved esthetics. Yttria stabilized tetragonal zirconia (Y-TZP) offers good mechanical properties, including high flexural strength, relatively low elastic modulus, and high fracture toughness.

Zirconia does not contain amorphous silica glass like feldspathic porcelain, leucite-reinforced ceramics, and lithium disilicate ceramics; thus, traditional ceramic surface treatments such as HF etching followed by silane application are ineffective. (2)

Internal surface treatment of dental ceramics is one of the important factors that determine the success of the ceramic restoration by increasing its retention and improving its mechanical and physical properties. The success of the cementation process is dependent on the composition and surface texture of ceramic material and tooth texture.

Both hydrofluoric acid etching and airborne aluminum oxide particle abrasion produce irregular surfaces necessary for micromechanical bonding of the ceramics. However, zirconia and in-ceram based ceramics resist hydrofluoric acid etching and sandblasting with aluminium particles so, alternative conditioning systems were introduced. (3)

Tribochemical silica coating was introduced to embed silica particles on the ceramic surface, and thus rendering the silica-modified surface chemically reactive to the resin cements through the application of silane coupling agents. Recently laser technique which worked by delivering energy in the form of light, with very high energy density, was introduced as a way of changing surface texture and enhancing bond strength. A few studies have also been performed on the carbon dioxide laser treatment of zirconium oxide ceramics.⁽⁴⁾

There are several tests for assessments of bond strength of resinbased materials to dental ceramics namely shear. These test methods are based on the application of a load in order to generate stress at the adhesive joints until failure occurs. (4) Surface topography was evaluated using a surface roughness tester and scanning electron microscope. (5)

Review of Literature

Dental ceramics are appreciated as a highly esthetic restorative material with an optimal esthetic property that simulates the natural dentition appearance. Other desirable characteristics include translucency, fluorescence, chemical stability, biocompatibility, high compressive strength, and a coefficient of thermal expansion similar to tooth structure⁽⁶⁾. In spite of their many advantages, ceramics are fragile under tensile strain⁽⁷⁾. Many different ceramic systems have been introduced in recent years for all types of indirect restorations. Porcelain is a mixture of glass and crystal components.

The zirconia systems currently available for use in dentistry include ceramics with 90% or higher content zirconium dioxide, which is the yttrium, stabilized tetragonal zirconia (Y-TZP) and glass infiltrated ceramics with 35% partially stabilized zirconia. (8)

Zirconia based all ceramic restorations:

Zirconia ceramic material has been available for use in restorative dentistry for several years, and there has been an increased interest recently in these materials. Zirconia was introduced into dental medicine in different versions as a replacement for metal. This material possesses extraordinary properties such as high bending strength (above 1000 MPa), hardness (1200–1400 Vickers) and color of Zirconia similar to teeth and its biotechnical characteristics allow the manufacture of biocompatible, qualitatively highgrade and aesthetic tooth and implant reconstructions. Zirconia-based