

Enhanced Detection of Methicillin Resistant Staphylococcus aureus (MRSA) & Effect of some Local Agents on them

Thesis Submitted for Partial Fulfillment of Master Degree in Medical Microbiology & Immunology

Presented by:

Amal Mohammed Sayed Soliman

M.B.B.CH. - Faculty of Medicine Ain Shams University

Under Supervision of:

Prof. Dr. Laila El-Sayed Ahmed Soliman

Professor of Medical Microbiology & Immunology Faculty of Medicine – Ain Shams University

Dr. Safia Hamed Abd El-Aziz El-Abd

Lecturer of Medical Microbiology & Immunology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Acknowledgements

First of all, I would like to express my gratitude to Allah who gave me the power and enthusiasm to accomplish this work.

I'm greatly honored to express my deep gratitude to "**Prof. Dr. Laila Soliman**", Professor of Microbiology & Immunology, Faculty of Medicine, Ain Shams University. She gave me her experience, time, kind support & mastery teaching. I'm sincerely grateful to her valuable supervision, profuse knowledge, precious and contributive comments that served me in the construction of this work.

I'd like to express my great thanks to "Dr. Safia Hamed" Lecturer of Medical Microbiology & Immunology, Faculty of Medicine, Ain Shams University for her continuous encouragement, sharing in data representation of this work and her faithful support.

I'm sincerely grateful to the head of the Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University "*Prof. Dr. Amany Mostafa*" and my colleagues especially **Dr. Nermeen Mahmoud** "Lecturer of Medical Microbiology & Immunology" for their unlimited help, encouragement and valuable cooperation.

Also, I want to express my gratitude to my Husband "**Dr. Abdullah**" Assistant Lecturer of Microbiology Department, Faculty of Science, Al-Azhar University and my little lovely Daughter "**Judy**".

Contents

>	Title	Page no.
	List of tables	I-II
	List of figures	III-IV
	List of abbreviations	V-VIII
	Abstract & Keywords	IX
>	Introduction & Aim of the Work	1-4
>	Review of Literature	5-107
1.	Genus of Staphylococcus	5
•	Natural Habitat	5
•	Morphology	6
•	Important Properties of Staphylococci	7
•	Growth Requirements	8
•	Pathogenicity	8
•	Virulence factors of Staphylococcus aureus	8
a.	Cell wall polymers	9
b.	Cell surface proteins	10
c.	Capsule	11
d.	Secreted proteins	12
e.	Other virulence factors	19
2.	Genetic structure of Staphylococcus aureus	20
3.	Infections caused by Staphylococcus aureus in	
	Humans	24

	Title	Page no.
•	Skin infections.	24
•	Invasive infections.	26
•	Toxin-mediated <i>Staphylococcus aureus</i> -related illnesses.	30
4.	Laboratory Diagnosis of infections caused by	
	Staphylococcus aureus.	31
•	Phenotypic method.	32
•	Genotypic method	35
5.	Nosocomial infections	35
•	Definition	35
•	Types	37
6.	Resistance mechanisms to antimicrobials	38
7.	Methicillin Resistant Staphylococcus Aureus (MRSA)	43
•	Definition	43
•	History	43
•	Colonization	46
•	Types	48
•	Epidemiology	50
•	Source of infection	56
•	Mode of transmission	57
•	Classification of MRSA	58
•	Hospital-acquired MRSA(HA-MRSA) infections	60
•	Community-acquire MRSA(CA-MRSA) infections	61
•	Identification of MRSA	62

	Title	Page no.
1.	Methods other than disc diffusion	63
a.	Agar screening	63
b.	Dilution using broth microdilution or agar	
	dilution	63
c.	Epsillometer test (E- test)	64
d.	Breakpoint	64
e.	Latex agglutination	64
2.	Rapid diagnostic testing of MRSA	65
a.	Molecular methods	65
b.	Chromogenic screening agar for rapid Detection	66
3.	Other methods:	66
a.	Automated methods	66
b.	Quenching fluorescence method	67
c.	Typing of MRSA	67
•	MRSA Prevention & control strategy	
•	Treatment of MRSA	79
8.	Antiseptics and Disinfectants	90
•	Acetic acid	93
•	Hydrogen Peroxide	94
•	Iodine and Iodophors	95
•	Chlorine based compounds	98
>	Material & Methods	102-108
1.	Materials	102

	Title	Page no.
2.	Methods	104
•	Isolation and Identification	104
•	Effects of some antiseptics used in surgery and	
	burn units of Ain shams University hospitals	
	against MRSA isolates.	106
•	Statistical methodology	108
>	Results	109-125
>	Discussion	126-135
>	Summary	136-138
>	Conclusion & Recommendations	139-140
>	References	141-200
>	Appendix	201-208
>	Arabic summary	

List of Tables

Table No.	Title	Page No.
1	Zone diameter interpretive standards for MRSA according to CLSI 2014.	62
2	Demographic data of subjects and types of collected samples.	110
3	Typical Appearance of microorganisms on chromogenic MRSA screening agar media.	114
4	Description of the identified isolates from different clinical specimens.	116
5	MRSA isolates identified by conventional method using cefoxitin disc and CHROMagar TM after 24hrs. & 48hrs.	118
6	The relation between the percentage of MRSA isolates obtained from the conventional method versus those which isolated by CHROMagar TM from the different clinical specimens.	120
7	Wilcoxon signed Ranks test on carrier identification.	121
8	Predictive values, sensitivity and specificity of the chromogenic agar compared to cefoxitin disc diffusion in identification of MRSA from different samples.	122

Table No.	Title	Page No.
9	Determination of Minimal inhibitory concentration (MIC)& Minimal bactericidal concentration (MBC) of some antiseptic Agents.	124
10	The MIC & MBC of the different used antiseptics.	125

List of Figures

Figure No.	Title	Page No.
1	ß-lactam Antibiotics, Chemical structure of (A) Penicillin and (B) Methicillin.	40
2	The introduction of antibiotics and consequent evolution of resistance in <i>S. aureus</i> .	45
3	S. aureus carriage rates per body site in adults in the general population and S. aureus nasal carriers in health care personnel.	47
4	The prevalence of MRSA resistance in Europe	51
5	Parts of the body and illnesses caused by MRSA infection.	59
6	Effect of an antiseptic on a MRSA isolate	108
7	Beta hemolytic colonies of <i>S. aureus</i> on blood agar.	111
8	Golden Yellow colonies of <i>S. aureus</i> on Mannitol Salt Agar (MSA).	111
9	Slide of gram positive cocci arranged in clusters.	111
10	Positive catalase reaction.	112
11	Positive tube coagulase reaction.	112

Figure No.	Title	Page No.
12	Positive slide coagulase test.	112
13	Cefoxitin disc diffusion (Inhibition zone diameters ≤ 21 mm).	113
14	Typical appearance of microorganisms on CHROMagar TM media	115
15	The different organisms isolated from the clinical specimens.	117
16	Pie chart shows the percentage of the identified MRSA isolates from different clinical samples.	119
17	Tube dilution method to determine MIC.	123

List of Abbreviations

Abbreviation	Full term
AST	Active survillance test
β-lactam	Beta lactam
BlaZ	BLaZ gene
CA-MRSA	Community acquired methicillin resistant Staphylococcus
	aureus
Cao	Coagulase
ccr gene	cassette chromosome recombinase gene
ccrA/ccrB or ccrC	cassette chromosome recombinase A/B or C
CDC	Center for disease control and prevention
CLSI	Clinical and laboratory standard institute
CoNS	Coagulase negative Staphylococci
DHFR	Dihydrofolate reductase
DNase	Deoxyribonuclease
EPIC	European Prevalence of Infection in Intensive Care Study
EU	European Union
FAME	fatty acid modifying enzyme
Fc /IgG	(Fragment, crystallizable)/ Immunoglobulin G
FDA	Food and Drug administration
FEM	Factor Essential for Methicillin
Fn	Functional Description
H ₂ O	Water molecule
H ₂ O ₂	Hydrogen peroxide
HAIs	healthcare-associated infections (HAIs)

Abbreviation	Full term
HA-MRSA	Health care associated methicillin resistant Staphylococcus
	aureus
HCW	Health care workers
HIV	Human Immunodeficiency Virus
Hlg	Hlg locus
ICU	Intensive Care Unit
IDSA	Infectious Diseases Society of America
IL-8	Interleukin-8
kDa	Kilo-dalton
luk	luk gene
lukF-PV and	lukF-PV and lukS-PV genes
lukS-PV	
MBC	Minimal bactericidal concentration
Mbp	Million base pairs
MDRB	Multidrug resistant bacteria
MGEs	mobile genetic elements
MHC	Major Histocompatibility Complex
MIC	Minimal inhibitory concentration
MRSA	Methicillin Resistant Staphylococcus aureus
MSA	Mannitol salt agar
MSCRAMMs	microbial surface components recognizing adhesive
	matrix molecules
MSSA	Methicillin Sensitive Staphylococcus aureus
Mu50	The first clinical strain of S. aureus resistant to
	vancomycin

Abbreviation	Full term
NDM-1	New Dehli metallo-beta-lactamase 1.
Ng	Nano gram
NPV	Negative predictive value
Nuc	Nuclease
O2	Oxygen
PAA	Peracetic acid
PBP2	Pencillin binding protein 2
PBP2a	Pencillin binding protein 2a
PCR	Polymerase chain reaction
Ppm	Part per million
PPV	Positive predictive value
PVL	Panton Valentine leucocidin
rRNA	ribosomal RNA
SAK	Staphylokinase
SaPIs	S. aureus pathogenicity islands
SCCs	Staphylococcal cassette chromosomes
SCVs	Small-colony variants
SE	Staph. Enterotoxins
SEL	Staph. Enterotoxins like
Spa	Staphylococcal protein A
TESSy	The European Surveillance System
TNFR1	tumor necrosis factor receptor 1
TSST-1	toxic shock syndrome toxin-1
USA	The United States of America
VanA	Vancomycin resistance gene

Abbreviation	Full term
VISA	Vancomycin intermediate resistant Staphylococcus
	aureus
Vitek	Immuno Diagnostic Assay System
VRE	Vancomycin resistant Enterococci
VRSA	Vancomycin resistant Staphylococcus aureus
WHO	World Health Organization

Abstract

In the present study, we use CHROMagar $^{\text{TM}}$ medium as a rapid method taking only 24 hrs. for MRSA detection from 70 clinical specimens (exudates or pus) and 25 nasal swabs (health care personnel) in comparison to the conventional method which needs 48 hrs., the validity values obtained were 100% sensitivity, specificity, PPV and NPV of cefoxitin disc diffusion method versus 93.8% sensitivity, 100% specificity, 100% PPV and 97% NPV of the chromogenic agar in identification of MRSA isolates and wound discharge from nasal swabs, burn samples collectively. Also we test the effect of some antiseptics Agents on the MRSA isolates. The used antiseptics were acetic acid (5%), betadine (10%), sodium hypochlorite' dakin's solution' (4%) and H₂O₂ (10%). Minimal inhibitory concentration (MIC) & minimal bactericidal concentration (MBC) of the different antiseptics were measured against the MRSA isolates. These results revealed that acetic acid was effective in the range of 5% to 0.63%, while betadine was effective in the range of 10% to 1.25%, also H2O2 was effective in the range of 10% to 0.63% but Dakin's solution was effective in the range of 0.5% to 0.063%.

Keywords: *Staphylococcus aureus* - MRSA - Chromogenic agar - Conventional methods - local antiseptic agents.