

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Efficacy of Laser and Ultrasound Waves on Bacteria Isolated from Diabetic Foot Infection

THESIS

Submitted to The High Institute of Public Health,
Alexandria University,
in partial fulfillment of the requirements for the
Degree of Master of Public Health Sciences

(Microbiology)

 $\mathcal{B}y$

Doaa Mohamed Abu Al-Nor El Khouly

B.Sc. Faculty of Science, University of Tanta, 1999

High Institute of Public Health Alexandria University 2002

SUPERVISORS

Prof. Dr. Medhat Saber Ashour

Professor of Microbiology

High Institute of Public Health

Alexandria University

Prof. Dr. Moustafa Moustafa Mohamed Ahmed

Professor of Biophysics

Medical Research Institute

Alexandria University

Dr. Ola Ahmed Wasfi

Lecturer of Microbiology High Institute of Public Health Alexandria University /jid !-

My Medicated to My Beloved

Sister, Brothers & Under Mathees

Acknowledgment

First of all, thanks to **ALLAH** for help and strength offered to me during this work.

Words can not adequately express my heartily thanks, profound gratitude, sincere appreciation and indebtedness to **Prof. Dr. Medhat Saber Ashour**, Professor of Microbiology, High Institute of Public Health, Alexandria University for his laborious continuous effort, precious advice, kind support and keen supervision throughout the whole course of this study. It is an honour working under his supervision. It is with pleasure that I express my everlasting deepest thanks, special appreciation and sincere gratitude, valuable advice, unlimited cooperation, talented careful review and endless support throughout this work.

I am greatly indebted and grateful to **Prof. Dr. Moustafa**Mohamed Ahmed, Professor of Biophysics, Medical Research

Institute, University of Alexandria, for his precious advice, constructive

guidance, willing assistance, kindness, valuable support, encouragement and

unlimited help which made his supervision a great pleasure to me.

I am greatly thankful, indebted and sincerely grateful to **Dr. Ola Ahmed Wash**, Jecturer of Microbiology, High Institute of Public Health, Alexandria University for her willing assistance, kind support and fruitful effort during this work.

I would like to thank all members of staff and personnel of Department of Microbiology for helping me to accomplish this work.

Last but not least, I owe special thanks and gratitude to my parents, grandfather, uncles, sister and brothers who nurtured, loved and faithfully supported me throughout this entire work.

LIST OF ABBREVIATIONS

ADP

Aluminum Disulphonated phthalocyanine

Al Pc S2

Aluminum Disulphonated pthalocyanine

CU

Chronic Ulcer

CFU/ml

Colony Forming Unit

CW

Continuous Wave

DFI

Diabetic Foot Infection

DFU

Diabetic Foot Ulcer

Er:YAG

Erbium: Yttrium Aluminium Garnet

Ga Al As

Gallium Aluminum Arsenide

 \mathbf{DM}

Diabetes Mellitus

HI

Health Insured

In-Ga-Al-PO4

Indium-Gallium-Aluminum-Phosphoric

IR

Infrared Radiation

IDDM

Insulin Dependent Diabetes Mellitus

LLP

Lethal Laser Photosensitization

LASER

Light Amplification Stimulated Emission of Radiation

METS

MacFarland Equivalence Turbidity Standard

Methicillin-Resistant S. aureus MRSA MB Methylene Blue Monosonication MS MTS Monothermosonication Neodymium: Yttrium Aluminium Garnet Nd:YAG NHI Non Health Insured Non Insulin Dependent Diabetes Mellitus NIDDM **PBS** Phosphate Buffer Saline TBToludine Blue TBO Toludine Blue O UHF Ultra High Frequency **US** Waves Ultrasonic waves

Ultraviolet

U.V.

List of Figures

Figure		Page
(1)	Schematic representation of a typical laser source	15
(2)	Atom structure	16
(3)	Atomic energy states	18
(4)	Structure of ruby laser	20
(5)	Laser thermal and nonthermal effects	21
(6)	Radius-time curves for cavitating bubbles in an ultrasonic field	29
(7)	13050-LAS 50 Hi-Tech diode laser 50 w device	53
(8)	Right: Model-Bransonic ultrasonic B-220 Left: Model-ultrasonic therapy CSL device	53
(9)	Schematic representation of experimental setup	59
(10)	Bacterial suspension exposure to laser beam	61
(11)	Bacterial suspension exposure to US waves	61
(12)	Bacterial suspension exposure to laser beam + US waves	63
(13)	Total bacterial viable counts before exposure to laser beam or/and US waves	64
(14)	Total bacterial viable counts after exposure to laser beam	64
(15)	Total bacterial viable counts after exposure to US waves	65
(16)	Total bacterial viable counts after exposure to laser beam + US waves	65
(17)	Frequency of isolated species from diabetic foot infection of 63 patients	69

€	Figure		Page
	(18)	Change in Enterobacter SP count due to exposure to laser or/and ultrasound	78
	(19)	Change in S.pyogenes count due to exposure to laser or/and ultrasound	81
	(20)	Change in K.pneumoniae count due to exposure to laser or/and ultrasound	84
	(21)	Change in S. faecalis count due to exposure to laser or/and ultrasound.	87
	(22)	Change in <i>E.coli</i> count due to exposure to laser or/and ultrasound	90
	(23)	Change in K. Ozaenae + oxytoca count due to exposure to laser or/and ultrasound.	93
	(24)	Change in <i>P.aeruginosa</i> count due to exposure to laser or/and ultrasound	96
	(25)	Change in <i>P.vulgaris</i> count due to exposure to laser or/and ultrasound	99
	(26)	Change in <i>C.freundii</i> count due to exposure to laser or/and ultrasound	102
	(27)	Change in S.aureus count due to exposure to laser or/and ultrasound	105
	(28)	Change in <i>P.mirabilis</i> count due to exposure to laser	108

Table		Page
(XI)	Changes in S. pyogenes (n=2) count due to exposure to laser, Us waves, or laser + US waves	80
(XII)	Changes K. pneumoniae (n=4) in count due to exposure to laser, US waves, or laser + US waves	83
(XIII)	Changes in S. faecalis (n=5) count due to exposure to laser, US waves, or laser + US waves	86
(XIV)	Changes in <i>E. coli</i> count (n=5) due to exposure to laser, US waves, or laser + US waves	89
(XV)	Changes in K. ozaenae + K. oxytoca (n=6) count due to exposure to laser, US waves, or laser + US waves	92
(XVI)	Changes in <i>P. aeruginosa</i> (n=9) count due to exposure to laser, US waves, or laser + US waves	95
(XVII)	Changes in <i>P.vulgaris</i> (n=10) count due to exposure to laser, US waves, or laser + US waves	98
(XVIII)	Changes in <i>C. freundii</i> (n=13) count due to exposure to laser, US waves, or laser + US waves	101
(XIX)	Changes in S. aureus (n=15) count due to exposure to laser, US waves, or laser + US waves	104
(XX)	Changes in <i>P. mirabilis</i> (n=30) count due to exposure to laser, US laser, or laser + US waves	107

List of Tables

Table		Page
(I)	Biochemical reactions for identification of Staphylococci and Streptococci Gm +ve cocci isolates	56
(II)	Identification of oxidase negative lactose fermenting Gm –ve isolates	56
(III)	Identification of oxidase negative lactose fermenting Gm –ve isolates	57
(IV)	Identification of oxidase positive Non lactose fermenting Gm –ve isolates	57
(V)	Identification of oxidase negative non-lactose fermenting Gm –ve isolates	58
(VI)	Number, percentage of bacterial species isolates from 63 patients with diabetic foot infection	68
(VII)	Age, sex and blood sugar distribution among the 63 diabetic foot patients	71
(VIII)	Results of pre-experimental study before and after exposure to laser & US to determine the best doses of exposure	73
(IX)	Temperature changes of bacterial suspension before and after exposure to laser, US waves and laser + US waves for 20 min	75
(X)	Changes in Enterobacter sp (n=1) count due to exposure to laser, US waves or laser + US waves	7 7