

A GEOMETRIC APPROACH TOWARDS BIOPHILIC DESIGN

By

Dalia Ahmed Abou Bakr

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
Architectural Engineering

A GEOMETRIC APPROACH TOWARDS BIOPHILIC DESIGN

By Dalia Ahmed Abou Bakr

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Architectural Engineering

Under the Supervision of

Prof. Dr. Hisham Sherif Gabr	Dr. Tarek Abdel Raouf Mohamed
Professor of Architectural Design	Assistant Professor
Architectural Department	Architectural Department
Faculty of Engineering,	Faculty of Engineering,
Cairo University	Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A GEOMETRIC APPROACH TOWARDS BIOPHILIC DESIGN

By Dalia Ahmed Abou Bakr

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in

Architectural Engineering

Approved by the
Examining Committee
Prof. Dr. Ahmed Hussein Sherif, External Examiner
Professor and Chair of the Department of Architecture,
School of Science and Engineering, American University in Cairo (AUC)
Prof. Dr. Zeinab Yousef Shafik, Internal Examiner
Prof. Dr. Hisham Sherif Gabr, Thesis Main Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Dalia Ahmed Abou Bakr

Date of Birth:28/11/1983Nationality:Egyptian

E-mail: Dalia.abobakr@eng.edu.eg

Phone: 35678203

Address: Architecture Department,

Faculty of Engineering, Cairo University, Giza.

Registration Date:01/10/2011Awarding Date:...../2016Degree:Doctor of PhilosophyDepartment:Architectural Engineering

Supervisors:

Prof. Hisham Sherif Gabr

Dr. Tarek Abdel Raouf Mohamed

Examiners:

Prof. Ahmed Hussein Sherif (External examiner)
Prof. Zeinab Yousef Shafik
Prof. Hisham Sherif Gabr (Thesis main advisor)

Title of Thesis:

A Geometric Approach towards Biophilic Design

Key Words:

Biophilia, Biophilic Design, geometric qualities, restorative architecture.

Summary:

The current study investigates different humane architectural approaches. It focuses on biophilia and biophilic design, in an attempt to create a conceptual framework to reflect the understanding of biophilia on architectural design. It aims to reach a set of essential geometric qualities -that are assumed to have restorative effect on humans and enrich their experience of the built environment. The study uses an experimental model to examine the physiological and psychological effect of the proposed geometric qualities on users.

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisors Prof. Hisham Gabr and Dr. Tarek Abdel Raouf. Their guidance helped me in all the time of researching and writing this thesis. I would like to thank Prof. Hisham for his continuous support during both my M.Sc. and my Ph.D. study. I could not have imagined having a better advisor and mentor with his patience, motivation, and immense knowledge. I would also like to thank Dr. Tarek for his encouragement, motivation and his patience to listen to my unorganized ideas, which helped a lot in developing this research. I would also like to thank Prof.Ahmed Sherif and Prof. Zeinab for their valuable comments, which added a lot to the research.

I would like to thank the Science and Technology Development Fund in Egypt (STDF) as part of this study benefited from their fund. I am sincerely grateful to the Systems and Biomedical Engineering Department (SBME), faculty of engineering, Cairo university. SBME gave me access to their rehabilitation engineering and bionics laboratory and research facilities, without their precious support I would have never been able to perform the practical part of this study. I would like to thank eng. Khaled Said for his help in designing the experiment protocol and the EEG device operation, data recording, and analysis. I would also like to thank eng. Mohamed Hisham for helping me in recording the rest of the subjects.

My sincere thanks goes to Prof. Yasser Mostafa kadah for his dedication, cooperating, and paying so much time and effort in helping me regardless having a very busy schedule, and living in another country. He was patient enough to do the EEG data analysis over and over again till we reached the best results considering the current situation. He was responsible for the pre-processing and classification of the EEG results. I could have never been able to finish this study without his invaluable help in analysing the EEG data. I thank the subjects who volunteered in my study: Ahmed Emad, Ahmed Esam, Ali Al-Gammal, Hisham Mohammed, Khaled Geith, Mahmoud Abdel Raouf, Moamen Ahmed, Mohammed Al-Sayed, Mohammed Farouk, Mohammed Marzouk, Mohammed Rabie, and Sherif Al-Shanawany. Thank you all for your patience, enthusiasm and encouragement.

Special thanks goes to my family for their support and help during every minute of the five years of writing this thesis, and throughout my whole life. I would like to thank my mother for helping me a lot by taking so many responsibilities off my shoulders to give me time to finish my research. My dad for pushing me forward when I was about to give up. I would like to thank my brother Moamen for his support and help on so many levels, starting from helping me in choosing the suitable tool for the practical part, connecting me with specialists, and of course helping me filling my knowledge gaps about neuroimaging and data processing. He also offered invaluable help in the final analysis of the EEG data results, and the statistical analysis. My sister Ghada for emotional support. I would like to thank my sweet little boy Mohammad, his smile has always succeeded in brightening my mood even in the darkest days. And of course my lovely husband Ali for coping with my depressions, tension and anxiety during conducting this research. Thank you for your support and encouragement and for listening to my endless talks about every detail regarding this research. At last but not least I thank God the almighty for giving me the will and strength to finish this work.

Dedication

I dedicate this work to my best friend, soul mate, and husband: Ali Al-Gammal.

Thank you for your love, encouragement, and support.

Table of Contents

Acknowledg	gments	I
Dedication		II
Table of Co	ntents	III
List of Figur	res	VII
List of Table	es	XIV
Abstract		XVI
Chapter 1:	Introduction	1
1.1 The	Problem Definition	2
1.1.1	Reflections on the nature of architecture	2
1.1.1.	1 Architecture and science	3
1.1.1.	2 Shared canon of value and judging criteria	4
1.1.2	Inhumane architecture and architectural education and practice .	5
1.1.3	Restorative architecture	7
1.1.3.	1 Towards a humane architecture	8
1.1.3.	Why biophilia	8
1.1.4	The research problem	9
1.1.5	Research aims and objectives	10
1.1.6	The research hypotheses	11
1.1.7	Knowledge foundation	12
1.2 The	esis Organization	13
Chapter 2:	Literature Review	15
2.1 Intr	oduction	15
2.2 Ref	lections on Twentieth Century Architecture	15
2.2.1	Explaining the success of modernism	18
2.2.2	Deconstructivism	25
2.3 Arc	hitecture for the New Millennium	27
2.3.1	Science and the coming century of the environment	27
2.3.2	Different approaches towards humane architecture	28
2.4 Bio	philia	32
2.4.1	Origins and theoretical background	32
2.4.2	Scientific explanation to human connection to nature	33
2.4.3	The necessity for biophilia	35

2.4.4	Biophilic design	36
2.5 Sur	nmary	37
Chapter 3:	Biophilic Design from Theory to Practice	39
3.1 Intr	oduction	39
3.2 Bio	philic Design Techniques	39
3.2.1	The high-tech method	41
3.2.2	Geometric method	42
3.2.2.	Preference matrix (R. Kaplan & Kaplan, 1979)	46
3.2.2.	2 Psycho-evolutionary model (Roger Ulrich, 1983)	46
3.2.2.	Seven attributes of nature (Heerwagen & Gregory)	48
3.2.2.	Fifteen Principles of living structures (Christopher Alexander)	49
3.2.2.	5 Laws for universal structure order (Nikos Salingaros)	53
3.2.2.	6 Fractals	54
3.3 The	Geometric Qualities of Restorative Environments	54
3.3.1	Complexity	58
3.3.1.	1 Architectural implications	58
3.3.2	Universal structure order	59
3.3.2.	1 Universal scaling hierarchy	59
3.3.2.	2 Architectural implications of universal scaling hierarchy	61
3.3.2.	3 Universal distribution of sizes	62
3.3.	2.3.1 Architectural implications of universal distribution of sizes	62
3.3.3	Coherence	63
3.3.3.	1 Architectural implications	63
3.3.4	Fractals	65
3.3.4.	1 Implications of fractals in architecture	66
3.4 Sur	nmary	68
Chapter 4 :	Testing the Geometric qualities	69
4.1 Intr	oduction	69
4.2 Me	thodology	69
4.2.1	Defining the problem	69
4.2.2	Hypotheses	69
4.2.3	Choice of proper procedure:	70
4.2.4	Device specifications	73
4.2.5	Determining the variables	74
425	1 Participants	74

4.2	.5.1.1 EEG	74
4.2	.5.1.2 Self-reporting of emotions	74
4.2.5.	2 Case study selection	75
4.2.5.	3 Emotion mapping and recognition	75
4.2.6	Experimental procedure	77
4.2.7	Data collection	79
4.2.7.	1 EEG signals acquisition	79
4.2.7.	2 Self-reporting of emotions	80
4.2.8	Data analysis	80
4.2.8.	1 EEG signals processing (Feature extraction)	80
4.2.8.	2 Analysis of self-reporting of emotions	80
4.3 Sur	nmary	81
Chapter 5:	The Application of the Experimental Model	83
5.1 Intr	oduction	83
5.2 Gro	oup (1): architects	83
5.2.1	Complexity	83
5.2.2	Universal structure order	86
5.2.3	Coherence	89
5.2.4	Fractals	92
5.3 Gro	oup (2): non-architects	94
5.3.1	Complexity	94
5.3.2	Universal structure order	97
5.3.3	Coherence	100
5.3.4	Fractals	103
5.4 Co	mparing group (1) and group (2) results	105
5.4.1	Complexity	105
5.4.2	Universal structure order	108
5.4.3	Coherence	111
5.4.4	Fractals	113
5.5 EE	G results (data acquisition, processing and analysis)	116
5.5.1	Data Acquisition	116
5.5.2	Pre-processing	118
5.5.3	Classification	118
5.5.4	Accuracy estimation	119
5.5.5	Subjects results	123

4	5.5.5.1	Analysis method	
4	5.5.5.2	Sample analysis of EEG data	130
	5.5.5.2	2.1 Data derivatives	130
	5.5.5.2	2.2 Subject one data analysis	130
5.5	5.6 D	viscussions	136
Chapte	er 6 Con	nclusions	139
6.1	Summ	nary of findings	139
6.2	Discus	ssions	140
6.2	2.1 Ti	racing the hypotheses	140
6.2	2.2 In	nplications	156
6.2	2.3 Li	imitations	157
6.3	Recon	nmendations	158
6.4	Sugge	stion for future research	160
Refere	nces		163
Appen	dix 1: E	valuation Experiment's Photos	177
Appen	dix 2: S	elf Reporting of Emotions Results	193
Appen	dix 3: E	EG Results	213
Annen	dix 4: C	Consent Forms	217

List of Figures

Figure 1.1: Image processing in the brain6
Figure 1.2: Lack of detail vs. macular degeneration. Left: normal vision vs. vision with macular degeneration. Right: Lack of detail in minimalist buildings, the church of light by: Tadao Ando
Figure 1.3: Unstructured details vs. visual agnosia
Figure 1.4: Colourless built environment vs. cereberal achromatopsia
Figure 1.5: Thesis organization
Figure 2.1: Major changes and architectural movements in the 20th century16
Figure 2.2: The five points of the new architecture in villa Savoye
Figure 2.3: Drafts of new cities in the 20th century
Figure 2.4: Pruitt Igoe housing project from building to demolition20
Figure 2.5: Architectural meme proliferates using a parasitic cycle22
Figure 2.6: From the simple triangle to a complex Sierpinski triangle23
Figure 2.7: The use of steel and glass in a new way that differs from that in the 19 th century
Figure 2.8: Formal set of rules of modernism as presented in modern masters books and architectural products
Figure 2.9: Encapsulation in modern architecture
Figure 2.10: The Parc de la Viellette by Bernard Tshumi
Figure 2.11: Path of ecological design from conventional to regenerative practice29
Figure 2.12: Evidence based-design, sustainable design, and green design30
Figure 2.13: Premaculture design concept
Figure 2.14: Grid and place cells. Left: place cells, middle: mental maps, right: grid cells
Figure 3.1: Dimensions, elements, and attributes of biophilic design Kellert40
Figure 3.2: Left: The direct experience of water in the Sydney opera house. Middle: indirect use of water in the water temple. Right: the symbolic use of water in the Potomac Hospital. Photograph by Joseph Parimucha

Figure 3.3: Mimicking different life cycles in buildings
Figure 3.4: The three images used in 1986 NASA experiment. (Left): a photograph of a forest (Middle): an artistic rendition of a landscape, and (Right): painted lines 44
Figure 3.5: Different approaches towards the geometric method
Figure 3.6: Scaling Hierarchy.
Figure 3.7: Strong Centers
Figure 3.8: Thick Boundary as an implied center
Figure 3.9: Altering Repetitions
Figure 3.10: Positive space
Figure 3.11: Good Shape
Figure 3.12: Local Symmetries
Figure 3.13: Deep Interlock
Figure 3.14: Contrast
Figure 3.15: Gradients
Figure 3.16: Roughness
Figure 3.17: Echoes
Figure 3.18: The Void
Figure 3.19: Simplicity
Figure 3.20: Not Separateness
Figure 3.21: Universal Scaling Hierarchy
Figure 3.22: Universal Distribution of sizes showing only three scales
Figure 3.23: Left: Reflectional Symmetry, Center: Transitional Symmetry & Right: Rotational Symmetry
Figure 3.24: The relation between different qualities presented in the seven models (Attributes of nature, prospect & refuge theory, psycho-evolutionary, preference matrix fractals, 15 properties of living structures, & laws of structure order)
Figure 3.25: The Geometric Qualities of Healing Environments
Figure 3.26: Universal distribution of sizes in river shore in Norway.

Figure 3.27: Left: An example of perforated fractals; natural sponge. Right: An example of accretive fractals; Roman broccoli cauliflower
Figure 4.1: The components of the eegosports device
Figure 4.2: Mapping of the six emotions, adopted from Russell's direct circular scaling.
Figure 4.3: Self-assessment using 11 points mankin
Figure 4.4: The experimental procedure
Figure 4.5: International 10-20 system of electrode placemental
Figure 5.1: Group (1) results for complexity session (positive photos)84
Figure 5.2: Group (1) results for complexity session (negative photos)
Figure 5.3: Box plot for complexity session (Group1)85
Figure 5.4: Group (1) results for universal structure order session (positive photos)87
Figure 5.5: Group (1) results for universal structure order session (negative photos)87
Figure 5.6: Box plot for universal structure order session (Group1)
Figure 5.7: Group (1) results for coherence session (positive photos)89
Figure 5.8: Group (1) results for coherence session (negative photos)90
Figure 5.9: Box plot for coherence session (Group1)91
Figure 5.10: Group (1) results for fractals session (positive photos)92
Figure 5.11: Group (1) results for coherence session (negative photos)93
Figure 5.12: Box plot for fractals session (Group1)93
Figure 5.13: Group (2) results for complexity session (positive photos)95
Figure 5.14: Group (2) results for complexity session (negative photos)96
Figure 5.15: Box plot for complexity session (Group2)96
Figure 5.16: Group (2) results for universal structure order session (positive photos)98
Figure 5.17: Group (2) results for universal structure order session (negative photos). 98
Figure 5.18: Box plot for universal structure order session (Group2)99
Figure 5.19: Group (2) results for coherence session (positive photos)100
Figure 5.20: Group (2) results for coherence session (negative photos)