BIOCHEMICAL STUDIES ON NANOPARTICLES AS ANTIOXIDANT AGENTS

By

MOHAMED ABDEL-SHAKUR ALI

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2012

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2016

APPROVAL SHEET

BIOCHEMICAL STUDIES ON NANOPARTICLES AS ANTIOXIDANT AGENTS

Ph.D. Thesis In Agric. Sci. (Agricultural Biochemistry)

By

MOHAMED ABDEL-SHAKUR ALI

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2012

Approval Committee

Or. SAYED SOLIMAN EL-SAADANY Prof. Agric. Biochemistry, Fac. Agric., Zagazig University	
Or. ABDEL-MONEIM MOHAMED RADWAN AFIFY Prof. Agric. Biochemistry, Fac. Agric., Cairo University	• •
Or. SAYED ABDEL-KADER FAYED Assistant Prof. Agric. Biochemistry, Fac. Agric., Cairo University	
Or. EMAM ABDEL-MOBDY ABDEL-RAHIM Prof. Agric. Biochemistry, Fac. Agric., Cairo University	

Date: 31 / 3 / 2016

SUPERVISION SHEET

BIOCHEMICAL STUDIES ON NANOPARTICLES AS ANTIOXIDANT AGENTS

Ph.D. Thesis
In
Agric. Sci. (Agricultural Biochemistry)

By

MOHAMED ABDEL-SHAKUR ALI

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2012

SUPERVISION COMMITTEE

Dr. EMAM ABDEL-MOBDY ABDEL-RAHIM

Professor of Agricultural Biochemistry, Fac. Agric., Cairo University

Dr. SAYED ABDEL-KADER FAYED

Assistant Professor of Agricultural Biochemistry, Fac. Agric., Cairo University

Name of Candidate: Mohamed Abdel-Shakur Ali Degree: Ph.D.

Title of Thesis: Biochemical Studies on Nanoparticles as Antioxidant

Agents

Supervisors: Dr. Emam Abdel-Mobdy Abdel-Rahim

Dr. Sayed Abdel-Kader Fayed

Department: Agricultural Biochemistry

Approval: 31 / 3 / 2016

ABSTRACT

The present study was undertaken to evaluate the effects of chitosan (CS) and chitosan nanoparticles (CSN) on rats suffering from dimethoate (DM) and evaluate the effects of CS and CSN on human cancerous cell lines (MCF7, HCT116, A549 and PC3).

CSN were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the nanoparticles were determined by size and zeta potential analysis, Transmission Electron Microscopy (TEM) and Fourier Transform Infrared analysis (FTIR). The average diameter and zeta potential of CSN were 116.5 nm and 6.43 mV, respectively. Subsequently, the cytotoxicity of CS and CSN were examined by the methyl tetrazolium (MTT) assay. CSN showed the anticancer activity with the LC50 values of 101.28 μ g/mL in MCF7, 367.65 μ g/mL in PC3, 666.67 μ g/mL in HCT116 and 681.82 μ g/mL in A549, whereas CS gave the LC50 values of 102.67 μ g/mL in MCF7, 694.44 μ g/mL in PC3, 1470.59 μ g/mL in HCT116 and 769.23 μ g/mL in A549.

The male albino rats treated with CS (500 mg/kg bw), CSN (250 mg/kg bw) and combination between CS (250 mg/kg bw) and CSN (125 mg/kg bw) along with administration of DM (1% DM/corn oil; 20 mg/kg bw) for 3 weeks. The obtained results showed that the treatments generally lowered the DM-induced activities of hepatic enzyme markers (AST, ALT, ALP and LDH), kidneys function parameters levels (urea, uric acid and creatinine) and lipid profile levels (triglycerides, cholesterol, LDL-C and VLDL-C) but increased protein profile (protein, albumin and globulin) and HDL-C levels. Also, the histopathological examination showed marked improvements in histological structure of the liver.

Therefore, the results of this study suggest that CS and CSN may be potentially used as anticancer against MCF7, HCT116, A549 and PC3 cell lines. In addition to the protective effect of CS and CSN adult rats against the DM-induced damage in rats. Also, chitosan did not show any toxicity on normal rats.

Key words: Cancer cell lines, chitosan, chitosan nanoparticles, dimethoate, kidneys function, liver function.

ACKNOWLEDGEMENT

All thanks and praise is to God the All-wise, the All-knowing, the creator of this wonderful world.

Abdel-Raheem Professor of Agricultural Biochemistry, Faculty of Agriculture, Cairo University and Dr. Sayed Abdel-Kader Fayed Assistant Professor of Agricultural Biochemistry, Faculty of Agriculture, Cairo University for giving me the opportunity to work in this study. They provided me with direct, helpful supervision and constructive criticism. Their valuable advices exceeded the scientific work to other life aspects. I am also grateful for Dr. Gada Ibrahim Mahmoud and Dr. Yassmin Emam Abdel-Mobdy Faculty of Agriculture, Cairo University for their excellent, sincere assesting; and for being continuously supporting me.

Special appreciation to Dr. Diaa Attia Marrez and Dr. Osama Darwish, Researchers of Microbiology, National Research Center, to their generosity in providing me with their scientific experience.

I am especially grateful to all the members of the Dept. Biochemistry, Faculty of Agriculture Cairo University for the continuous care and support that I had since started my bachelor studies and until now. My success in my studies had influenced by the continuous encouragement and motivation from my friends to whom I am thankful.

Special deep appreciation is given to my late father, my mother, my brothers and sisters. Also I feel deeply grateful to my wife who dedicated her life to me and my lovely son Hamza.

LIST OF ABBREVIATIONS

No.	Abbreviation	
1.	4-AAP	4-aminoantipyrine
2.	AChE	Acetylcholinesterase
3.	ADP	Adenosine diphosphate
4.	ALP	Alkaline phosphatase
5.	ALT	Alanine aminotransaferase
6.	AST	Aspartate aminotransaferase
7.	ATP	Adenosine triphosphate
8.	BNPP	bis(4-nitriphenyl)phosphate
9.	CAT	Catalase
10.	CS	Chitosan
11.	CSN	Chitosan nanoparticles
12.	DD	Degree of deacetylation
13.	DLS	Dynamic Light Scattering
14.	DM	Dimethoate
15.	DMSO	dimethylsulfoxide
16.	DPPH	2, 2- diphenyl – 1- picrylhydrazyl
17.	E	Eosin
18.	EDTA	Ethylenediaminetetraacetic acid
19.	FAO	Food and Agriculture Organization
20.	FTIR	Fourier Transform Infrared
21.	GD	Gestation days
22.	GK	glycerol kinase
23.	GOD	Glucose oxidase
24.	GPO	glycerol phosphate oxidase
25.	GPx	Glutathion peroxidase
26.	H	Heamtoxylin
27.	HDL-C	High density lipoprotein-cholesterol
28.	ICR	Imprinting Control Region
29.	LC	Lethal concentration
30.	LDL-C	Low density lipoprotein-cholesterol
31.	LPL	lipoprotein lipase
32.	LPO	Lipid peroxidation
33.	LSD	Least significant difference
34.	MFO	Mixed function oxidase
35.	MMP	Mitochondrial membrane potential

36. 37.	MPS MTT	Mononuclear phagocyte system 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
38.	NPs	Nanoparticles
39.	NRC	National Research Center
40.	OPI	Organophosphate pesticides
41.	PEG	Polyethylene glycol
42.	POD	peroxidase
43.	ROS	Reactive oxygen species
44.	SDS	Sodium dodecyl sulphate
45.	SEM	scanning electron microscope
46.	SNPs	Solid nanoparticles
47.	SOD	Soperoxide dismutase
48.	STAR	Steroidogenic acute regulatory
49.	TBARS	Thiobarbituric acid – reactive substances
50.	TEM	Transmission electron microscopy
51.	TPP	Tripolyphosphate
52.	VLDL-C	Very low density lipoprotein-cholesterol
53.	WHO	World Health Organization

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Nanotechnology	5
2. Nanoparticles	6
a. Characterization of nanoparticles	9
b. Nanoparticles biosafety	10
3. Chitosan	12
a. Chitosan applications	12
b. Chitosan Mode of action	17
c. Chitosan toxicity	18
4. Chitosan nanoparticles	22
a. Chitosan nanoparticles preparation	23
b. Chitosan nanoparticles applications	27
c. Chitosan nanoparticles mode of action	29
d. Chitosan nanoparticles toxicity	34
5. Dimethoate	34
a. Dimethoate toxicity	36
b. Dimethoate detoxification	40
MATERIALS AND METHODS	42
RESULTS AND DISCUSSION	66
SUMMARY	116
REFERENCES	119
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	List of biochemical analysis	47
2.	Anticancer activity of CS and CSN against MCF7, HCT116, A549 and PC3 cell lines	71
3.	Body weight, body weight gain, food intake and feed efficiency of the experimental animals	75
4.	Liver weight, kidneys weight and the ratio relative to animal body weight	78
5.	Spleen weight, heart weight and Lungs weight and the ratio relative to animal body weight	79
6.	Liver function of the experimental animals	84
7.	Kidneys function of the experimental animals	92
8.	Protein profile of the experimental animals	96
9.	Lipid profile of the experimental animals	101
10.	Blood glucose and LDH activity of the experimental animals	108

LIST OF FIGURES

No.	Title	Page
1.	Formation of the chitosan-tripolyphosphate complex by ionotropic gelation	25
2.	The size distribution by intensity of CSN	67
3.	Zeta potential distribution of CSN	67
4.	Electron micrographs of CSN	68
5.	Electron micrographs of CS	68
6.	FTIR spectra of CS	69
7.	FTIR spectra of CSN	69
8.	Body weight of experimental animals at deferent treatments	76
9.	Feed efficiency of experimental animals at deferent treatments	76
10.	Liver weight of experimental animals at deferent treatments	80
11.	Kidneys weight of experimental animals at deferent treatments	80
12.	Spleen weight of experimental animals at deferent treatments	81
13.	Heart weight of experimental animals at deferent treatments	81
14.	Lungs weight of experimental animals at deferent treatments	82
15.	ALT activity at deferent treatments	85
16.	AST activity at deferent treatments	85

17.	AST/ALT ratio at deferent treatments	86
18.	ALP activity at deferent treatments	86
19.	Total bilirubin at deferent treatments	87
20.	Urea levels at deferent treatments	93
21.	Uric acid levels at deferent treatments	93
22.	Creatinine levels at deferent treatments	94
23.	Total protein at deferent treatments	97
24.	Total albumin at deferent treatments	97
25.	Total globulin at deferent treatments	98
26.	Alp/Gl ratio at deferent treatments	98
27.	Triglycerides at deferent treatments	102
28.	Total cholesterol at deferent treatments	102
29.	HDL-C at deferent treatments	103
30.	LDL-C at deferent treatments	103
31.	VLDL-C at deferent treatments	104
32.	Plasma glucose at deferent treatments	108
33.	LDH activity at deferent treatments	109
34.	Photomicrograph of liver from normal control group revealing normal histological structure	111
35.	Photomicrograph of liver from DM-treated group showing severe congestion of all hepatic blood vessels and sinusoidal capillaries	
	omeo or war walking or	111

36.	Photomicrograph of liver from DM-treated group revealing proliferation and hyperplasia of bile ducts dilatation of portal vein	112
37.	Photomicrograph of liver from DM-treated group exhibiting severe vacuolar degeneration of hepatic cells	112
38.	Photomicrograph of liver from the group of rat treated with DM and CS showing marked improvement in histological structure with mild congestion of some blood vessels	113
39.	Photomicrograph of liver from the group of rats received DM and CSN exhibiting improvement in histological structure of hepatic cells with congestion of central vein	113
40.	Photomicrograph of liver of rat received DM and the mixture improvement in histological structure of liver and few necrotic areas associated with mononuclear cells aggregation	114

INTRODUCTION

Nanotechnology, an interdisciplinary research field involving chemistry, engineering, biology, and medicine, has great potential for early detection, accurate diagnosis, and personalized treatment of cancer (Cai and Chen, 2007). Nanoparticles are typically smaller than several hundred nanometers in size, comparable to large biological molecules such as enzymes, receptors, and antibodies. With the size of about one hundred to ten thousand times smaller than human cells, these nanoparticles can offer unprecedented interactions with biomolecules on both the surface of and inside the cells, which may revolutionize cancer diagnosis and treatment. The most well-studied nanoparticles include quantum dots (Cai *et al.*, 2006 and 2007), carbon nanotubes (Liu *et al.*, 2007), paramagnetic nanoparticles (Thorek *et al.*, 2006), liposomes (Park *et al.*, 2004b), gold nanoparticles (Huang *et al.*, 2007), and many others (Ferrari, 2005; Grodzinski *et al.*, 2006).

Chitosan (CS) is a linear polysaccharide composed of randomly distributed β -(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine. It is one of the major cationic polymers and the second most abundant polysaccharides in nature (Choi *et al.*, 2016). The $-NH_2$ and -OH groups endow CS with many special properties, making it applicable in many areas and easily available for chemical reactions. CS is safe, nontoxic and can interact with polyanions to form complexes and gels (Sunil *et al.*, 2004; Se and Niranjan, 2005). The use of natural compounds with chemopreventive properties has attracted much interest in chemotherapy and treatment of cancers. A good example is

the use of CS, a naturally occurring polymer that has been often tested in pharmaceutical and biomedical applications because of its promising properties such as biocompatibility, biodegradability and lower toxicity towards mammalian cells (Rinaudo, 2006). CS was found to have various biological activities including antimicrobial activity (Younes *et al.*, 2012), antioxidant activity (Younes *et al.*, 2014), CS is also reported to have anti-tumor effects by inhibiting tumor cell proliferation (Maeda and Kimura, 2004), inducing apoptosis (Pae *et al.*, 2001), and enhancing immune functions (Yu *et al.*, 2004).

Chitosan nanoparticles (CSN) may exhibit potential antibacterial activity as their unique character (Qi *et al.*, 2004). The unique character of nanoparticles could make CSN exhibit more superior activities than chitosan. CSN have been reported to have heightened immune-enhancing effect (Wen *et al.*, 2011), anticancer activity (Qi *et al.*, 2007) and antimicrobial activity of chitosan (Qi *et al.*, 2004).

Cancer remains to be one of the leading causes of death worldwide. Over the past several decades, significant advancements have been made in fundamental understanding of cancer biology, which has in turn led to better diagnostic and treatment methods. A major reason for this is our inability to administer therapeutic agents selectively to the targeted sites without adverse effects on healthy tissue. Current therapeutic strategies for most cancers involve a combination of surgical resection, radiation therapy, and chemotherapy (Ruoslahti *et al.*, 2010). Conventional chemotherapy can wreak havoc on healthy tissue, causing painful side effects, and it is not always effective. At the same time, there is the huge risk that the drugs