

Site Evaluation Framework; Case Study on Saqqara

By

Eng. Karim Hamdy Mohamed Abbas

A Thesis Submitted to
Faculty of Engineering, Cairo University
In Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

MINING ENGINEERING

FACULTY OF ENGINEERING – CAIRO UNIVERSITY

GIZA – EGYPT

2015

SITE EVALUATION FRAMEWORK; CASE STUDY ON SAQQARA

By

Karim Hamdy Mohamed Abbas

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mining Engineering

Under the Supervision of

Prof. Dr. Hassan Fahmy

•	·
Professor of Mining Engineering	Associate Professor
Mining Engineering Department	Mining Engineering Department
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University

Assoc. Prof. Yasser Elshayeb

FACULTY OF ENGINNERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

SITE EVALUATION FRAMEWORK; CASE STUDY ON SAQQARA

By

Karim Hamdy Mohamed Abbas

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mining Engineering

Approved by the Examining Committee	
Dr. Tarek Abd Elhamid	
Prof. Dr. Hani Helal	
Prof. Dr. Hassan Fahmy	
Assoc. Prof. Yasser Elshayeb	
FACULTY OF ENGINNERING. CAIRO UNIVER	RSITY

FACULTY OF ENGINNERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 Engineer's Name: Karim Hamdy Mohamed Abbas

Date of Birth: 18/03/1984 **Nationality:** Egyptian

E-mail: eng.karim.hamdy@gmail.com

Phone: +201006707727

Address: 12 Elshafey St., Haram, Giza – Egypt

Registration Date: 09/2008

Awarding Date:

Degree: Master of Science

Department: Mining, Petroleum and Metallurgy Engineering

Supervisors:

Prof. Dr. Hassan Fahmy Assoc. Prof. Yasser Elshayeb

Examiners:

Prof. Dr. Hassan Fahmy (Thesis Main Advisor)

Assoc. Prof. Yasser Elshayeb (Member) Prof. Hani Helal (Internal Examiner)

Dr. Tarek Abd Elhamid (External Examiner)

Chairman of Green Company for Environment Consultants

Title of Thesis:

Site Evaluation Framework; Case Study on Saggara

Key Words: Fault Tree, Sensitivity Analysis, Probabilistic, Saqqara, Site Evaluation

Summary:

Fault Tree Technique has proved to be an effective tool in evaluating various types of systems in various fields. The author applied Probabilistic Fault Tree Procedures to produce a new framework for site evaluation using generic model along with applying Sensitivity Analysis on data produced.

Having such framework developed, a case study was made on Saqqara site aiming at evaluating the whole site status and giving a practical example on how such generic framework for site evaluation can be applied on other sites.

Acknowledgments

The present work was carried out at the Mining, Petroleum and Metallurgy Engineering Department, Faculty of Engineering, Cairo University.

This thesis was completed under the supervision of Prof. Dr. Hassan Fahmy Imam and Associate Prof. Yasser Mahmoud Elshayeb, whom I'd the pleasure of working under their supervision. I express my sincere appreciation for their helpful, generous advice and guidance throughout the whole process.

I thank my Examiners, Prof. Dr. Hany Mahfouz Helal and Prof. Dr. Tarek Abd Elhamid who have been very instrumental in enriching my thesis. Appreciably I thank them so much for accepting me to be their student and for providing me with the guiding hand and Great Spirit in carrying out this research.

A debt of gratitude is to all people who in one way or another contributed ideas directly or indirectly. Because it would end up into long list to mention all the people I am indebted to, I gratefully thank all of them collectively.

Last, I would like to express my deep feelings towards each member of my family to whom I owe every success in my life. My cordial thanks spread out to my mother and my father for their love, support and guidance throughout my life.

I present my sincere gratitude to my wife Eng. Marwa Samir for encouraging me to accomplish the thesis.

Dedication

A special dedication goes to my Father (Hamdy Abbas) and Mother (Zahira Abd Elsalam) who always wish to see me at my best. I hope this might be considered a tiny progress towards what they expected.

I also would like to dedicate this accomplishment to the soul of my dearest aunt (Dr. Amina Abd Elsalam) who passed away during the preparation of the thesis; she encouraged me a lot in this regard. May God Bless Her Soul.

Finally, I dedicate the efforts done to my beloved country Egypt, hoping it may contribute to the development of "Om Eldonia".

Table of Contents

Acknowledgments	1
Table of Contents	iii
List of Tables	v
List of Figures	vi
Abstract	vii
Chapter 1: Introduction	1
1.1 Subject Overview	1
1.2 Problem Statement and Objectives	1
1.3 Approach and Methodology	2
1.4 Thesis Outline	2
Chapter 2: Probabilistic Fault Tree and Sensitivity Analysis	4
2.1 Basic Definitions	4
2.2 Probabilistic Fault Tree	
2.2.1 Role of Fault Tree Analysis in Decision Making	7
2.2.2 Role of Fault Trees in a Probabilistic Risk Assessment	
2.2.3 Application of Boolean Algebra in Fault Tree Analysis	
2.2.4 Applied Cases using Fault Tree	
2.3 Sensitivity Analysis (applied case)	14
Chapter 3: Saqqara Site	17
3.1 Site Historical Background	17
3.2 Geographical and Geomorphogical Setting	19
3.3 Geological Setting	23
3.3.1 Surface Geology	
3.3.2 Stratigraphy	24
3.3.3 Seismic Activities	26
3.4 Natural Hazards in Saqqara Site	27
3.4.1 Geologic hazards	
3.4.2 Hydrological Hazards	
3.4.3 Natural Radiations Hazards	35
3.5 Environmental Hazards	
3.5.1 Climatic Hazards	38

3.5.3 Noise and vibrations	46
3.5.4 Existing Visitation Site Status	48
3.5.5 Visitation Site Facilities and Infrastructure	56
Chapter 4: Generic Site Evaluation Framework and Case Study on	
Saqqara	_ 58
4.1 Generic Fault Tree Design and Structure	_ 58
4.1.1 Probability Computation Method	
4.2 Sensitivity Analysis Approach	_ 69
4.3 Case Study Reasoning on Saqqara	_ 76
4.3.1 Necessity of Studies to maintain Stability	76
4.3.2 Signs of Plateau Instability	77
4.3.3 Availability of Informative Data	79
4.3.4 Suitability of Probabilistic Approach	79
4.4 Saqqara Site Evaluation	_ 79
4.4.1 Site Risk Fault Tree	79
4.4.2 Case Study Findings	82
Chapter 5: Results	_ 85
5.1 Results	_ 85
5.2 Discussion of Results	_ 86
Chapter 6: Conclusions & Recommendations	87
Chapter 7: References	88

List of Tables

Table 1: Bio-chemical and physical characteristics of the River Nile in the GCR, compared to	0
Law 48 limits, [13]	31
Table 2: Exposure times at different archaeological sites [2]	36
Table 3: Maximum allowable noise intensity in different areas, [13]	46
Table 4: Number of permissible intermittent impacts during the daily working hours, [13]	. 47
Table 5: Effect of increasing Base Probability for all events	69
Table 6: Effect of increasing 1% per single event on the top event	70
Table 7: Colour Legend of Probability Category (generic case)	71
Table 8: Generic 2-D Probability Matrix	75
Table 9: Colour Legend of Probability Category (case study)	82
Table 10: 2-D Probability Matrix for Saqqara Case Study	84

List of Figures

Figure 1: Summary of Boolean Algebra and Probability Rules [8]	5
Figure 2: Example of Accident Sequence [1]	10
Figure 3: Typical Example of Fault Tree [1]	11
Figure 4: Map showing the study area location, [13]	20
Figure 5: Saqqara Site Map	
Figure 6: General Stratigraphic Section at Saqqara Plateau [11]	25
Figure 7: Geomorphological map of the pyramid district of the Necropolis of Dahshur (A),	
Location of the study site (B), Geology of the study area (C), [4]	
Figure 8: Photo taken after flood, 1929	
Figure 9: Mean Monthly Temperature, [13]	39
Figure 10: Mean Monthly Precipitation, [13]	39
Figure 11: Monthly Relative Humidity, [13]	40
Figure 12: Mean Monthly Evaporation, [13]	40
Figure 13: Wind Pattern, [13]	41
Figure 14: PM10 values VS time, Ref. Law No.4/94, Source: USAID, 2010, [13]	43
Figure 15: SO2 values VS time, Ref. Law No.4/94, Source: USAID, 2010, [13]	
Figure 16: NOX values VS time, Ref. Law No.4/94, Source: USAID, 2010, [13]	45
Figure 17: CO values VS time, Ref. Law No.4/94, Source: USAID 2010, [13]	
Figure 18: North Saqqara Visitation Plan, [13]	
Figure 19: Amenhotep Museum and its visitation plan, [13]	
Figure 20: Djoser Pyramid Visitation Plan and directions, [13]	51
Figure 21: Summary of events affecting site value at Djoser Step Pyramid, [13]	53
Figure 22: Teti Pyramid Cemetry, [13]	
Figure 23: Summary of events affecting site value at Teti Pyramid Cemetry, [13]	55
Figure 24: Main Branching of the Fault Tree	59
Figure 25: Human-related Issues	60
Figure 26: Nature-related Issues	61
Figure 27: Picture from Recent Failure at Moqqattam Area (Elzabaleen Area, 2008)	76
Figure 28: Pictures from Serapeum	77
Figure 29: Pictures from Step Pyramid	78
Figure 30: Fractures at Unas Pyramid	78
Figure 31: Saqqara Site Fault Tree	80
Figure 32: Effect of Collective Increase of Events Probability	83

Abstract

Fault Tree Technique has proved to be an effective tool in evaluating various types of systems in various fields. The author applied Probabilistic Fault Tree Procedures to produce a new framework for site evaluation using generic model along with applying Sensitivity Analysis on data produced.

The generic evaluation framework aims at summarizing and analyzing the overall site status (bird-eye view) through relating all the factors affecting any site under study in order to point out the most important factor(s) or group of factors affecting it using sensitivity analysis technique.

Relating the factors affecting the site value through a fault tree is a probabilistic approach to contribute to site's further development can be considered a pioneer approach in evaluating any site under study.

Having such framework developed, a case study was made on Saqqara site aiming at evaluating the whole site status and giving a practical example on how such generic framework for sites evaluation can be applied on other sites.

Chapter 1: Introduction

1.1 Subject Overview

Fault Tree Technique has proved to be an effective tool in evaluating various types of systems in various fields. The author applied Probabilistic Fault Tree Procedures to produce a new framework for site evaluation using generic model along with applying Sensitivity Analysis on data produced.

The generic evaluation framework aims at summarizing and analyzing the overall site status (bird-eye view) through relating all the factors affecting any site under study in order to point out the most important factor(s) or group of factors affecting it using sensitivity analysis technique.

Relating the factors affecting the site value through a fault tree is a probabilistic approach to contribute to site's further development can be considered a pioneer approach in evaluating any site under study.

Having such framework developed, a case study was made on Saqqara site aiming at evaluating the whole site status and giving a practical example on how such generic framework for site evaluation can be applied on other sites.

1.2 Problem Statement and Objectives

The author decided to use the Fault Tree method in order to relate the factors affecting site under study and then applying sensitivity analysis technique in order to assess the contribution of each factor to the whole site status.

The objectives of this thesis can be summarized as follows:

- 1. Developing generic framework for site evaluation utilising fault tree and sensitivity analysis techniques.
- 2. Applying developed evaluation framework on Saqqara Site.

1.3 Approach and Methodology

Fault Tree is a probabilistic approach to contribute to site's further development. However, other mathematical approaches using numerical analysis methods could be applied to deeply investigate such variables, but this is out of the research scope conducted in this thesis; as the author is focused on developing a site evaluation framework from a macro scale point of view.

The Author started with assuming probabilities within the generic fault tree as a worked example for the application of Fault Tree and Sensitivity Analysis, furthermore, a more focused Fault Tree Analysis on the Basic Events at Saggara Site is developed as a case study.

Due to the Absence of numeric data about the basic events at Saqqara Site, all the probabilities assumed were explained in due course.

1.4 Thesis Outline

- > Chapter 1: Introduction
 - This chapter contains the basic idea and the logic followed by the author to develop this Master of Science Thesis.
- > Chapter 2: Probabilistic Fault Tree and Sensitivity Analysis
 This chapter contains general information on all the techniques used within this thesis as conducted from the literature review carried out by the author.
- Chapter 3: Saqqara Site
 This chapter contains all basic information about Saqqara Site that will
 - integrated in the evaluation framework to be developed by the Author.
- > Chapter 4: Generic Site Evaluation Framework and Case Study on Saqqara

This chapter is divided to two parts, the first part is concerned with the explanation of how such framework is developed on generic basis with further analysis made on such model applying sensitivity analysis technique. The second part shows the necessity to apply a case on Saqqara area and shows the findings.

> Chapter 5: Results

This chapter contains all the results rendered by applying the framework which will be followed by a discussion on the interpretation of such results on site level.

> Chapter 6: Conclusions and Recommendations
Following the discussion of results, the author summarizes in this
chapter, all his conclusions about the current situation as well as his
recommendations.

> Chapter 7: References This chapter contains a list of all references (books, studies, research papers) he used to produce the Master of Science Thesis at hand.

Chapter 2: Probabilistic Fault Tree and Sensitivity Analysis

2.1 Basic Definitions

What is Fault Tree?

According to Clifton A. Ericson II [8], Fault Tree can be defined as a tool for analysing, visually displaying and evaluating failure paths in a system, thereby providing a mechanism for effective system level risk evaluations.

The fundamental concept of Fault Tree Analysis is the translation of the failure behavior of a physical system into a visual diagram and logic model. The diagram segment provides a visual model that very easily portrays system relationships and root cause fault paths. The logic segment of the model provides a mechanism for qualitative and quantitative evaluation. Fault Tree Analysis is based on Reliability theory, Boolean algebra and probability theory. A very simple set of rules and symbols provides the mechanism for analyzing very complex systems and complex relationships between hardware, software and humans.

Due to close similarity of relations between Probabilistic Fault Tree Basic Events, Boolean Algebra Operations (Figure 1) can be applied in order to perform a Sensitivity Analysis on such parameters.