

COMPACT MODEL FOR DOUBLE GATE TUNNEL FIELD-EFFECT TRANSISTOR

By

Mohamed Youssef Hassan Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

COMPACT MODEL FOR DOUBLE GATE TUNNEL FIELD-EFFECT TRANSISTOR

By

Mohamed Youssef Hassan Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Under the Supervision of

Prof. Dr. Nadia Hussein Rafat Prof. Dr. Serag El-Din El Sayed Habib

Engineering Mathematics and Physics Department Faculty of Engineering, Cairo University Electronics and Communications Department
Faculty of Engineering, Cairo University

COMPACT MODEL FOR DOUBLE GATE TUNNEL FIELD-EFFECT TRANSISTOR

By

Mohamed Youssef Hassan Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Approved by the Examining Committee:

Prof. Dr. Nadia Hussein Rafat, Thesis Main Advisor

Prof. Dr. Serag El-Din El Sayed Habib, Thesis Advisor

Prof. Dr. Ahmed Abd El Hameed El Sadek, Internal Examiner

Prof. Dr. Wael Fekry Farouk Fekry, External Examiner

Professor at the Faculty of Engineering - Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

Engineer's Name: Mohamed Youssef Hassan Sayed

Date of Birth: 01/10/1988 **Nationality:** Egyptian

E-mail: muhamed.yusuf@eng.cu.edu.eg

Phone: 01064674330

Address: St. 231, Building No.8, Degla, Maadi, Cairo, Egypt

Registration Date: 01/10/2011 **Awarding Date:** 2015

Degree: Master of Science

Department: Engineering Mathematics and Physics

Supervisors:

Prof. Dr. Nadia Hussein Rafat

Prof. Dr. Serag El-Din El Sayed Habib

Examiners:

Prof. Dr. Nadia Hussein Rafat

Prof. Dr. Serag El-Din El Sayed Habib Prof. Dr. Ahmed Abd El Hameed El Sadek Prof. Dr. Wael Fekry Farouk Fekry (Thesis main advisor)
(Thesis Advisor)

(Internal examiner)
(External examiner)

Faculty of Engineering - Ain Shams University

Title of Thesis:

COMPACT MODEL FOR DOUBLE GATE TUNNEL FIELD-EFFECT TRANSISTOR

Key Words:

TFET; Double Gate; DG TFET; Compact model

Summary:

This thesis presents a new compact model for Double-Gate Tunnel Field-Effect Transistor (DG TFET). This physically based model accounts for the tunneling at the source channel interface as well as for the drift-diffusion in the channel region. It also accounts for the ON and the subthreshold modes of operation. This model enables the calculation of the I-V, Q-V and C-V characteristics of the device. The model is validated by comparing its results with that calculated numerically by the Sentaurus device simulator.

Acknowledgements

First, I would like to thank Allah for his greatness and for giving me the strength to complete this thesis.

I would like to express my thanks and appreciation to my supervisor Prof. Dr. Serag El-Din El Sayed Habib for his invaluable assistance and support throughout the project duration. His guidance reached far beyond scientific research, and was more of a mentor than a supervisor. Special thanks and appreciation goes to my supervisor Prof. Dr. Nadia Hussein Rafat for her patience, support, and encouragement. It has been a pleasure to work under her supervision.

Thanks to my family and particularly my father, who has always been there supporting me with his great life experience. Finally, I must express my indebtness and gratefullness to my wife, Sarah, for her support; without her love and encouragement, I couldn't have finished this thesis.

Mohamed Youssef Hassan Sayed, Nov. , 2015.

Table of Contents

Li	st of '	Tables	iii
Li	st of]	Figures	iv
Li	st of S	Symbols	vii
Li	st of A	Acronyms	xi
Al	ostrac	et e	xii
1	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Need for Green Switches Overview on classical MOSFET MOSFET minimum subthreshold swing value MOSFET scaling down problems 1.3.1 Power supply scaling limitation 1.3.2 Drain-induced barrier lowering effect 1.3.3 Punch-through 1.3.4 Threshold voltage roll-off 1.3.5 Gate-oxide leakage Green Switches Tunnel Field-Effect Transistor main idea TCAD Tool Thesis overview	1 1 2 3 3 4 6 6 6 6 7 7 8 10 11
2	I ito	rature Review	12
4	2.1	Subthreshold Swing Problem	
	2.2	TFETs literature survey	
	2.4	Main contributions in our DG-TFET compact model	23
3	DG- 3.1 3.2 3.3 3.4 3.5	TFET Developed Compact Model The proposed model idea Potential profile 3.2.1 Weak lateral drain field 3.2.2 Strong lateral drain field Electric field calculations 3.3.1 Strong lateral drain field mode 3.3.2 Weak lateral drain field mode Energy band diagram Charge and capacitance calculations	24 24 26 36 39 40 40 41 42
		3.5.1 Strong lateral drain field mode	42 42

	3.6	Current model	43
		3.6.1 Tunnel current	43
		3.6.2 Channel current	46
		3.6.3 Total current model	48
	3.7	Algorithm of the developed model	49
4	Resi	ults and Discussion	52
	4.1	Device specifications of sample DG-TFET	52
	4.2	Potential distribution results	54
	4.3	Energy band diagram results	58
	4.4	Electric field results	60
	4.5	The charge and capacitance results	62
	4.6	The current results	
	4.7	Parametric study	
5	Con	clusions	7 2
Aı	pend	lix A Derivation of the Tunnel Current Density	73
Re	References		

List of Tables

1.1	Comparison between SILVACO and Sentaurus TCAD tools	11
4.1	Silicon material properties similar to that in Sentaurus TCAD material	
	library	53
4.2	Values of various physical constants used in the DG-TFET developed model.	53
4.3	Germanium material properties similar to that in Sentaurus material library.	55
4.4	Percentage error in both I_{ON} and SS DC parameters of five DG-TFET	
	devices	71

List of Figures

1.1	Three dimensional structure of n-MOSFET. From [1] (after Arora, 1993.)	1
1.2	$I_{DS} - V_{GS}$ characteristics of MOSFET demosntrating the threshold	
	voltage roll-off occurs due to the short channel effects (SCEs). The green	
	curve represents the MOSFET before scaling down, while the red curve	
	represents it after scaling down	4
1.3	Schematic cross-section view of symmetrically doped DG-nMOSFET of	
	channel length L_g	5
1.4	Conduction energy band edges at the surface versus position from source to drain for DG-nMOSFET at: $L_g = 100nm$ and $V_{DS} = 0.1V$ represented	
	by red solid curve, $L_g = 30nm$ and $V_{DS} = 0.1V$ represented by blue solid	
	curve, and $L_g = 30nm$ and $V_{DS} = 0.5V$ represented by black solid curve	5
1.5	$I_{DS} - V_{GS}$ characteristics of DG-nMOSFET for: $L_g = 100nm$ and $V_{DS} = 0.1V$ represented by red solid curve, $L_g = 30nm$ and $V_{DS} = 0.1V$	
	represented by blue solid curve, and $L_g = 30nm$ and $V_{DS} = 1.0V$	
	represented by black solid curve. All curves are drawn at $V_{GS} = 1.0V$	6
1.6	$I_D - V_G$ characteristics of different type of switches. The green curve represents the ideal switch, the yellow curve represents the MOSFET	
	switch, and the blue represents the small slope switch	7
1.7	Schematic cross-section of single gate (a) n-TFET. (b) p-TFET	8
1.8	Energy band diagram of double gate n-TFET of 30nm channel length.	
	OFF state is represented by the dashed curves at $V_G = 0.0V$ and $V_D = 0.5V$.	
	ON state is represented by the solid curves at $V_G = 1.0V$ and $V_D = 0.5V$.	9
3.1	(a) Schematic diagram of DG-TFET. (b) Resistive circuit model for the	
J.1	DG-TFET modeling it as a series connection of two nonlinear resistances	
	R_{tun} and R_{chan}	24
3.2	(a) Electric field lines distribution in the weak lateral drain field mode.	<i>_</i> ¬
J. <u>Z</u>	Negative acceptor ions are represented by blue squares and positive donor	
	ions are represented by the green circles. The dotted pattern represents the	
	inversion charge. The length of each region is labeled (b) The DG-TFET	
	is divided into five regions. The value of the potential at the interface	
	between each two regions is labeled.	27
3.3	(a) Electric field lines distribution in the strong lateral drain field mode.	
	The length of each region is labeled. (b) The DG-TFET is divided into	
	three regions and the value of the potential at each region interface is labeled.	37
3.4	An analogy between the proposed resisitive circuit model of the DG-TFET	
	and the energy band diagram of n-type DG-TFET. The drawn energy band	
	diagram explains the tunneling process mechanism and labels the various	
	parameters used in the tunnel current model	44
3.5	Flow chart of the model	51
4.1	Schematic of a sample DG-TFET with various specifications labeled on it.	52

4.2	The lengths L_1 (length of the source depletion region) and L_2 (length of region II in Fig. 3.3a and Fig. 3.3b) are drawn versus: (a) V_D and at	
4.3	constant $V_G = 1.0V$. (b) V_G and at constant $V_D = 0.1V$ Electrostatic surface potential (i.e. at $y = 0$) versus the position along the	55
	<i>x</i> -direction in the strong lateral drain field mode at $V_G = 0.0, 0.3, 0.6, 0.9V$, and $V_D = 1.0V$	56
4.4	Electrostatic surface potential (i.e. at $y = 0$) versus the position along the x -direction in the weak lateral drain field mode at $V_D = 0.0, 0.3, 0.6, 0.9V$,	
4.5	and $V_G = 1.0V$	56
4.6	$V_G = 0.4, 0.6, 0.8, 1.0V$, and $V_D = 1.0V$	57
4.7	$V_D = 0.0, 0.3, 0.6, 0.9V$, and $V_G = 1.0V$	57
4.8	from 0.0V to 0.9V with a step voltage equal to 0.3V and $V_D = 1.0$ V Conduction (E_c) and valence (E_v) energy band edges versus the position x	59
4.9	along the DG-TFET in the weak lateral drain field mode at drain voltages 0.0V to 0.9V with an increment of 0.3V and V_G = 1.0V	59
4.10	1.0V. (b) weak lateral drain field mode at $V_G = 1.0V$ and $V_G = 0.0V$, 0.9V Total electric field at the surface (i.e. $y = 0$) versus the position along the x -direction in the strong lateral drain field mode at $V_G = 0.0$, 1.0V and	60
4.11	V_D =1.0V	61
4.12	$V_G = 1.0$ V	61
4.13	curve is 7.87%, and (d) magenta curve is 40.10%	63
4.14	blue curve is 8.72%, and (d) magenta curve is 33.16% $C_{GD} - V_D$ for different gate biases $V_G = 0.1$, 0.4, 0.7, and 1.0V. The calculated rRMSE is as follow: (a) red curve is 14.76%, (b) green curve is	63
4.15	13.67%, (c) blue curve is 13.51%, and (d) magenta curve is 14.76% $C_{GS} - V_G$ for various drain voltages $V_D = 0.1$, 0.4, 0.7, and 1.0V. The	64
4.16	calculated rRMSE is as follow: (a) red curve is 6.87%, (b) green curve is 6.22%, (c) blue curve is 6.43%, and (d) magenta curve is 4.99% Tunnel current and channel current versus V_1 at: (a) $V_G = 1.0V$, and	64
4.17	$V_D = 0.5V$. (b) $V_G = 1.0V$, and $V_D = 1.0V$	65 66

4.18	$I_D - V_D$ results at $V_D = 0.1$ $V_G = 0.8$, 0.9, and 1.0V. The calculated rRMSE	
	is as follow: (a) red curve ($V_G = 1.0V$) is 26.96%, (b) blue curve ($V_G = 1.0V$)	
	$(0.9V)$ is 29.96%, and (c) green curve ($V_G = 0.8V$) is 35.01%	68
4.19	$I_D - V_G$ results at $V_D = 0.1$, and 1.0V. The calculated rRMSE is as follow:	
	(a) red curve $(V_D = 1.0V)$ is 31.35%, and (b) blue curve $(V_D = 0.1V)$ is	
	68.19%	68
4.20	$g_{ds} - V_D$ at $V_G = 0.8, 0.9$, and 1.0V. The calculated rRMSE is as follow: (a)	
	red curve $(V_G = 1.0V)$ is 14.11%, (b) blue curve $(V_G = 0.9V)$ is 22.07%,	
	and (c) green curve ($V_G = 0.8V$) is 28.54%	69
4.21	$g_m - V_G$ at $V_D = 0.1$, and 1.0V. The calculated rRMSE is as follow: (a) red	
	curve $(V_D = 1.0V)$ is 20.15%, and (b) blue curve $(V_D = 0.1V)$ is 71.32%.	69
4.22	$I_D - V_G$ results at $V_D = 1.0$ V for $t_{ox} = 1, 2$, and 3nm. The calculated rRMSE	
	is as follow: (a) red curve ($t_{ox} = 1$ nm) is 32.33%, (b) blue curve ($t_{ox} = 2$ nm)	
	is 22.45%, and (c) green curve (t_{ox} =3nm) is 49.21%	70
4.23	$I_D - V_D$ results at $V_D = 1.0 \text{V}$ for $t_{si} = 7$, 10, and 15nm. The calculated	
	rRMSE is as follow: (a) red curve (t_{si} =7nm) is 49.38%, (b) blue curve	
	$(t_{si} = 10 \text{nm})$ is 22.45%, and (c) green curve $(t_{si} = 15 \text{nm})$ is 32.06%	70
4.24	$I_D - V_G$ results at $V_D = 1.0V$ when: (a) varying ε_{ox} . (b) varying L_{ϱ}	71

List of Symbols

 χ_{ge} germanium electron affinity (eV)

 χ_{si} silicon electron affinity (eV)

 η_d degeneracy factor in the highly doped drain region (eV)

 η_s degeneracy factor in the highly doped source region (eV)

 \hbar reduced Planck's constant (*J.s*)

 κ dimensionless scaling factor

 λ natural scaling length (nm)

 μ bulk mobility of electrons ($cm^2/V.s$)

 μ_{eff} effective mobility of electrons $(cm^2/V.s)$

 ϕ_m metal work function (eV)

 ϕ_{si} silicon work function (eV)

 $\psi(x,y)$ potential distribution at any point x, and y (V)

 $\rho(x,y)$ charge density at any point x, and y (C/m^3)

 ε_o Permittivity of free space (F/cm)

 ε_{ge} permittivity of germanium (F/cm)

 ε_{ox} permittivity of oxide (F/cm)

 $\varepsilon_{r,ox}$ relative permittivity of oxide

 ε_{si} permittivity of silicon (F/cm)

 \vec{k} wavevector (cm^{-1})

 \vec{v} group velocity vector (cm/s)

 ξ_x lateral electric field component(V/cm)

 ξ_y vertical electric field component(V/cm)

 ξ_{ox} vertical component of the electric field in the gate oxide (V/cm)

 ξ_{si} vertical component of the electric field in the silicon body (V/cm)

 ξ_{total} total electric field (V/cm)

 C_D depletion layer capacitance per unit area (F/cm^2)

 C_{gd} gate to drain capacitance per unit area (F/cm^2)

 C_{gs} gate to source capacitance per unit area (F/cm^2)

 C_{ox} gate oxide capacitance per unit area (F/cm^2)

 C_{si} silicon body film capacitance per unit area (F/cm^2)

E total energy (J)

 E_g energy bandgap (eV)

 E_l longitudinal energy (J)

 E_t transverse energy (J)

 E_{cc} channel conduction energy band edge (eV)

 E_{cd} drain conduction energy band edge (eV)

 E_{fc} quasi-Fermi energy level of electrons in the channel region (eV)

 E_{fs} Fermi energy level of holes in the source region (eV)

 E_{id} intrinsic Fermi energy level in the drain (eV)

 E_{is} intrinsic Fermi energy level in the source (eV)

 E_{vs} source valence energy band edge (eV)

 g_{ds} output-conductance (A/V.um)

 g_m trans-conductance (A/V.um)

 I_{chan} channel current per unit width (A/um)

 I_{OFF} Off-state current (A/um)

 I_{ON} On-state current (A/um)

 I_{tun} tunnel current per unit width (A/um)

 $J_{c \to s}$ channel to source tunnel current density (A/cm^2)

 $J_{s \to c}$ source to channel tunnel current density (A/cm^2)

 J_{tun} net tunnel current density (A/cm^2)

 k_B Boltzmann constant (J/K)

 L_1 source depletion region length (nm)

 L_2 length of region II in the weak lateral drain field mode (nm)

 L_3 drain depletion region length in the strong lateral drain field mode (nm)

 L_4 drain depletion region length in the weak lateral drain field mode (nm)

 L_g gate length (nm)

 m^* effective mass (kg)

 m_o free electron mass (kg)

n mobile carrier concentration (cm^{-3})

n(x, y) electron density at any position x and y (cm^{-3})

 N_c conduction band effective density states (cm^{-3})

 N_d drain doping concentration (cm^{-3})

 n_i intrinsic carrier concentration (cm^{-3})

 N_s source doping concentration (cm^{-3})

 $N_{\rm v}$ valence band effective density states (cm^{-3})

p power density (W/m^2)

 P_d power dissipation (W)

Q charge of the mobile carriers in region III (C)

q magnitude of charge of the electron (C)

 Q_D total charge of the positive ions inside the drain depletion region (C)

 Q_G charge accumulated on the gate electrode (C)

 Q_S total charge of the negative ions inside the source depletion region (C)

 Q_{III} total charge in region III (C)

 Q_{si} total charge per unit area inside the silicon (C/cm^2)

 R_{chan} channel resistance (Ω)

 R_{tun} tunnel resistance (Ω)

T absolute temperature in (K)

T(E) tunneling probability

 $T_{max}(E)$ maximum tunneling probability

 t_{ox} effective gate oxide thickness (nm)

 t_{si} silicon layer film thickness (nm)

 $T_{WKB}(E)$ tunneling probability calculated using WKB approximation

 V_1 quasi-Fermi potential of electrons at their entry point in the channel (V)

 V_D drain voltage (V)

 V_G gate voltage (V)

 V_t thermal voltage (V)

 V_{DD} power supply voltage (V)

 V_{Dsat} drain saturation voltage (V)

 V_{DS} drain to source voltage (V)

 V_{fbc} gate to channel flat band voltage (V)

 V_{GD} gate to drain voltage (V)

 V_{GS} gate to source voltage (V)

 V_{ov} overdrive voltage (V)

 V_{ox} voltage drop across the gate oxide (V)

 V_{th} threshold voltage in MOSFET (V)

W width of the DG-TFET (um)

 W_{min} minimum tunneling width (nm)

 $W_{tun}(E)$ tunneling barrier width (nm)

 X_1 entry point position of the tunneling electron into the channel region (nm)