Modification of Edible Food Packaging Materials Based on Natural Polymer Blends by Ionizing Radiation

Thesis
Submitted to
University College for Girls
Ain Shams University

Ph.D. DEGREE IN CHEMISTRY

BY

HUSSEIN EL-SHAHAT ALI

(M.SC. CHEMISTRY)

Master in Chemistry, Ain Shams University, 2005

NATIONAL CENTER FOR RADIATION RESEARCH AND TECHNOLOGY

ATOMIC ENERGY AUTHORITY

2010

Ain Shams University Girls College for Arts, Science, Education

Modification of Edible Food Packaging Materials Based on Natural Polymer Blends by Ionizing Radiation

Thesis Submitted to: University College for Girls
Ain Shams University

BY Hussein El-Shahat Ali

Thesis supervisors:

Prof. Dr. Abo El-Khair B. Mostafa

Prof. of Physical Chemistry

College for Girls, Ain Shams University

Prof. Dr. Abdel Wahab M. El-Naggar

Radiation Chemistry Department, National

Center for Radiation Research and Technology

Ass. Prof. Dr. Magdy Mohamed Hassan Senna

Radiation Chemistry Department, National

Center for Radiation Research and Technology

Head of Chemistry Department Prof. Dr.

Date of Examination: / /

Ain Shams University

Girls College for Arts, Science and Education

Chemistry Department

Student Name: Hussein El-Shahat Ali

Scientific Degree: Ph.D

Department: Chemistry Department

Name of Faculty: Girls College for Arts, Science and

Education

University: Ain Shams University

Master Degree: 2005

ABSTRACT

Blends based on different ratios of plasticized starch (PLST), poly (vinyl alcohol) (PVA) and carboxymethyl cellulose (CMC) were prepared by solution casting in the form of thin films. The PLST/PVA and PLST/CMC films were exposed to different doses of gamma radiation. The effect of gamma-irradiation on the thermal, mechanical and structure morphology properties was investigated. As an application in the field of the prolongation of food preservation life time, Mango fruits were coated with solutions of gamma-irradiated PLST/PVA and PLST/CMC blends in the presence of chitosan, as an antimicrobial material, to form thin films. The results showed that the gamma-irradiation improved all the physical properties, which provides suitable materials based on natural biodegradable polymers for food preservation withstanding the temperature and stresses.

ACKNOWLEDGEMENT

First of all, thanks to ALLAH for infinite and persistent supply with patience and efforts to accomplish this work successfully. The author would like to thank **Prof. Dr. Abo El-Khair B. Mostafa**, Prof. of Physical Chemistry, College for Girls, Ain Shams University, for his capable supervision, encouragement, interest and useful discussion. Deepest gratitude is owed to Prof. Dr. Abdel Wahab M. El-Naggar, Radiation Chemistry Department, National Center for Radiation Research and Technology for suggesting the topic of this work, continuous supervision, practical support throughout this study and helpful discussion that made this work possible. I would like to express my great appreciation to Ass.Prof. Dr. Magdy Mohamed Hassan Senna, Radiation Chemistry Department, National Center for Radiation Research and Technology for his supervision, encouragement and valuable guidance which assisted greatly in completing this work.

Great thanks to **Dr. Heba** for her cooperation.

Finally, I would like to thank the staff and colleagues of the Radiation Chemistry Department for the cooperation and encouragement throughout this work.

No			Page
		CHAPTER 1	
	li	ntroduction and Literature Review	
1.1.	Effect	of Ionizing Radiation on Polymeric Materials	1
	1.1.1	•	2
		Materials	
	1.1.2.	Radiation Crosslinking and Degradation of	5
		Polymers	
1.2.	•	etic and Natural Polymers	
		Poly (vinyl alcohol)	8
		Carboxymethyl cellulose	10
		Starches	13
	1.2.4.	8	19
	40.	Polymers	•0
	1.2.5.	Effect of Ionizing Radiation on Natural	28
1.2	D.1	Polymers	
1.3.	-	er Blends	27
	1.3.1. 1.3.2.	Types of Polymer Blends Effects of Longing Rediction on Polymer	37 47
	1.3.2.	Effects of Ionizing Radiation on Polymer Blends	4/
1.4.	Edible	e Materials Based on Natural Polymers	
1.7.		Chemical and Physical Properties	52
		Effect of Microorganisms	5 2
		Antimicrobial Protection of Edible Materials	61
	1.4.4.		67
	20.00	rippineutions of Zunote Muterium	0.
		CHAPTER II	
	Ma	terials, Methods and Measurements	
2.1.	Mater	ials	75
2.2.	Solven	ts and Chemical Reagents	75
2.3.		ical Procedures	75
	2.3.1.	Preparation of Plasticized Starch (PLST) with	75
		Poly(vinyl alcohol) Blends	
	2.3.2.	Preparation of Starch/Carboxymethyl	76
		cellulose Blends	

	2.3.3.	Preparation of films from starch with	77
		polymer and chitosan blends	
	2.3.4.	Gamma Irradiation	78
2.4.		rement and Analysis	
	2.4.1	Gel fraction	78
	2.4.2.	Swelling Properties	78
	2.4.3.	Thermo gravimetric analysis (TGA)	79
	2.4.4.	Tensile Mechanical Properties	79
	2.4.5.	Structure Morphology (SEM)	79
	2.4.6.	Differential Scanning Calorimetry (DSC)	80
	2.4.7.	Microbial Resistance	80
	2.4.8.	Application of Edible Material	81
		CHAPTER III	
		Results and Discussion	
3.1.	Chara	cterization of gamma irradiated plasticized	
0.1.		poly (vinyl alcohol) (PLST/PVA) blends and	82
		pplications as protected edible materials	-
	3.1.1.	Effect of Irradiation Dose on Gel Fraction of	84
	012121	PLST/PVA Blends	•
	3.1.2.	Swelling Properties of PLST/PVA blends	86
	3.1.3.	Thermogravimetric analysis (TGA)	88
	3.1.4.	Differential Scanning Calorimetry	95
	3.1.5.	Mechanical Testing	100
	3.1.6.	Scanning Electron Microscopy (SEM)	105
	3.1.7.	Application of PLST/PVA blends as Edible	108
		Materials	
	3.1.8.	Antimicrobial effect of PLST/PVA/ Chitosan	116
3.2.	Effect	of Gamma Irradiation on the Physical	123
	Proper	ties of Plasticized Starch (PLST)/Carboxy	
	methyl	cellulose (CMC) Blends	
	3.2.1.	Swelling Properties of PLST/CMC Blends	125
	3.2.2.	Thermogravimetric Analysis (TGA)	127
	3.2.3.	Differential Scanning Calorimetry (DSC)	135
	3.2.4.	Mechanical Testing	139

	3.2.5.	Scanning Electron Microscopy (SEM)	147
	3.2.6.	Antibacterial effect of PLST/CMC /Chitosan	150
Summ	ary		151
Refere	nces		155
Arabic	Summ	narv	

List of Figures

Figures	Title	Page
Figure 1	Effect of irradiation dose on the gel fraction of PLST/PVA blends of different compositions	85
Figure 2	Swelling behaviour in water at room temperature (pH=7) of PLST/PVA blends of different compositions exposed to various doses of gamma radiation	87
Figure 3	TGA thermograms of unirradiated PLST and PLST/PVA blends of different ratio	89
Figure 4	Rate of reaction curves of unirradiated PLST and PLST/PVA blends of different ratios	91
Figure 5	TGA thermograms of PLST/PVA blends of different ratios irradiated to different doses of gamma irradiation	92
Figure 6	Rate of reaction curves of PLST/PVA blends of different ratios irradiated to different doses of gamma irradiation	93
Figure 7	DSC scans of unirradiated PLST and PLST/PVA blends of different compositions	96
Figure 8	DSC scans of PLST/PVA (90/10) blend irradiated to different doses	97
Figure 9	DSC scans PLST/PVA (80/20) blend irradiated to different doses	98
Figure 10	Effect of irradiation dose on the tensile strength at the break point for PLST/PVA blends of different compositions	102

Figure 11	Effect of irradiation dose on elongation at the	
	break point for PLST/PVA blends of different	
	compositions	103
Figure 12	SEM micrographs of the surface fractures of	
	unirradiated pure PLST and PLST/PVA	
	blends of different ratios	106
Figure 13	SEM micrographs of the surface fractures of	
	PLST/PVA blends of different ratios exposed	
	to different doses of gamma radiation	107
Figure 14	Photographs of untreated mango fruits;	
	pictures were taken after 17 day at room	
	temperature (27±3°C)	113
Figure 15	Photographs of treated mango fruits with	
	unirradiated PLST/PVA blends; pictures	
	were taken after 17 day at room temperature	
	(27±3°C)	114
Figure 16	Photographs of Mango fruits preserved by	
	coating with gamma irradiated PLST/PVA	
	blends; pictures were taken after 17 day at	
	room temperature (27±3°C)	115
Figure 17	Inhibitory effect of unirradiated PLST/PVA/	
	chitosan solution against E.coli.	120
	cintosan solution against E.con.	
Figure 10	Inhibitory effect of irradiated PLST/PVA/	
Figure 18	·	121
	chitosan solution against E.coli.	141
Figure 19	Inhibitory effect of unirradiated PLST/PVA/	
	chitosan solution against E.coli.	122
	emitosum solution against 2.com	
E'. 20	C. III.	
Figure 20	Swelling behaviour in water at room	100
	temperature (pH=7) of PLST/CMC blends of	126
	different compositions exposed to various	
	doses of gamma irradiation	

Figure 21	TGA thermograms of unirradiated pure	128
	PLST and PLST/CMC blends of different	
	compositions	
	_	
Figure 22	Rate of thermal decomposition reaction	
	(dw/dt) of unirradiated pure PLST and	130
	PLST/CMC blends of different compositions	
Figure 23	TGA thermograms of PLST/CMC blends of	
	different compositions exposed to various	131
	doses of gamma radiation	
Figure 24	Rate of thermal decomposition reaction	
	(dw/dt) PLST/CMC blends of different	133
	compositions exposed to various doses of	
	gamma radiation	
Figure 25	DSC thermograms of unirradiated	
	PLST/CMC blends of different ratios	136
Figure 26	DSC thermograms of unirradiated	
	PLST/CMC (80/20%) blends exposed to	137
	various doses of gamma irradiation	
Figure 27	Stress-strain curves of unirradiated	
	PLST/CMC blends of different ratios	140
Figure 28	Yield stress of PLST/CMC blends of different	
	ratios exposed	141
Figure 29	Break stress of PLST/CMC blends of different	
	ratios exposed to various doses of gamma	142
	irradiation	
Figure 30	Break stress of PLST/CMC blends of different	
	ratios exposed to various doses of gamma	143
	irradiation	
Figure 31	Yield strain of PLST/CMC blends of different	
	ratios exposed to various doses of gamma	144
	irradiation	
Figure 32	SEM micrographs of the surface fractures of	148

	unirradiated pure PLST and PLST/CMC	
	blends of different ratios	
Figure 33	SEM micrographs of the surface fractures of	149
	PLST/CMC blends of different ratios exposed	
	to different doses of gamma radiation	

List of Schemes

Scheme 1	Proposed hydrogen bond formation between	104
	poly (vinyl alcohol) (PVA) and starch	
Scheme 2	Proposed radicals formed on side chain of	135
	CMC by ionizing radiation	
Scheme 3	Proposed hydrogen bond formation between	145
	carboxy methyl cellulose (CMC) and starch	

AIM OF THE WORK

Poly (vinyl alcohol) (PVA) is a non-toxic, water-soluble polymer which has good film forming and has a highly hydrophilic properties, while Carboxymethyl cellulose (CMC) is a polymer has a significant swelling capacity, non-toxicity, unique reactivation, hydrophilicity, molecular characteristics, and widely used in the pharmaceutical industry, Starch, on the other hand, is a naturally occurring polymer, low effective cost, and easy to handle. The blending of naturally occurring polymers like starch into other polymeric materials could provide biodegradable materials. In this regard polymer blend based essentially on incorporation of starch into the PVA, CMC matrix changes the physico-mechanical properties of the material and thus modifies the polymer structure at both the molecular and the morphological levels, irradiation of polymer blends can be used to crosslink or degrade the desired component polymer, or to fixate the blend morphology. The present work is undertaken to study the effect of gamma irradiation on the structure-property behavior of polymer blends based on various ratios of plasticized starch and poly (vinyl alcohol), plasticized starch and CMC. This study aims basically to use these blends in film industry as an edible coating material for food preservation.

CHAPTER I INTRODUCTION AND LITERATURE REVIEW

1.1. Effect of Ionizing Radiation on Polymeric Materials

Chmielewski (2004) reported that the radiation technologies applying gamma sources and electron accelerators for material processing are well-established processes. The technologies to be developed besides environmental applications could be nanomaterials, structure engineering materials and natural polymers processing.

Wilson (1974) reported that the ionizing radiation covers different types of radiation, such as electromagnetic waves, X-rays and -rays from radioisotopes (cobalt-60 and cesium-137). Also -rays and electron beams generated by electron accelerators. Heavy particle radiations (e.g. alpha, accelerated deuteron and heavier ions) and neutron beams may be used for special purposes. It can be easily seen that there are generally undetectable differences in the effects produced by electrons and gamma rays at equal doses. Fast moving electrons lose their energy through electrostatic interaction with the electrons of irradiated medium. If energy transferred from the incident particles is higher than the binding energy of the electrons in the molecule, an electron may be ejected leaving behind a positively charged "ionized" molecule. If the amount of energy transferred to the molecule is less than its lowest ionization potential, electronic excitation may occurring giving rise to an excited state, which may or may not dissociate further into free radicals.

The two most common radiation types in industrial use are gamma and electron beam. The gamma facilities are mainly cobalt-60 (**Clough, 2001**). The advantages of gamma radiation over other types include the

fact that gamma rays are very penetrating. The technology is extremely simple, so there is low downtime for a gamma source. In addition, it is not sensitive to electricity prices. Gamma sources are most commonly used today for radiation sterilization of disposable plastic medical items (Halls, 1991).

Electron beam machines play a significant role in the processing of polymeric materials; a number of different machine designs and different energies are available. Industrial electron beam accelerators with energies in the 150–300 MeV range are used in applications where low penetration is needed, such as curing of surface coatings (Berejka, 1993). Accelerators operating in the 1.5 MeV range are used where more penetration is needed, as in the cross-linking of cable insulation. Highenergy commercial electron beams, operating in the 10 MeV range, are used for applications such as sterilization of boxes filled with disposable medical devices (**Descamps**, 1995). Electron beam machines have a highdose rate and therefore short processing times. While they have limited penetration compared with gamma, they conversely have good utilization of energy due to the following aspects: (1) all can be absorbed by the sample being irradiated. (2) Can be switched off when it is not in use. (3) They contain no radioactive isotope; this provides an advantage from a public acceptance standpoint. (4) No radioactive material is disposed off when the facility is decommissioned.

1.1.1. Interaction of Radiation with Polymeric Materials

Bhattacharya (2000) reported that radiation technology is preferred over the other conventional energy resources due to some reasons, e.g. large reactions as well as product quality can be controlled, saving energy