Predictors of Successful ablation & recurrence in Atrio-ventricular Nodal Re-entrant Tachycardia

Thesis Submitted for Partial Fulfillment of MD Degree in Cardiology

By

Ayman Morttada Abd El Moteleb MBBCH. MsC

Under supervision of

Prof. Dr. Wagdy Abd El Hamid Galal

Professor of Cardiology Ain Shams University

Prof. Dr. Samir Saleh Wafa

Professor of Cardiology Ain Shams University

Prof. Dr. Mervat Abo El Maaty Nabeeh

Professor of Cardiology Ain Shams University

Dr. Hussein Saad Shallan

Assistant Professor of Cardiology Ain Shams University

Dr. Ahmed Fathy Tamara

Lecturer of Cardiology Ain Shams University

Faculty of Medicine

Ain Shams University Cairo 2007

Contents

Lis	st of abbreviation	i
Lis	st of tables	ii
Lis	st of figures	v
]	. Introduction	1
IJ		
III	7. Review of literature	5
	> Atrioventricular nodal reentrant tachycardia	5
	• Definition	5
	• Normal Anatomy of the Atrioventricular Junction	6
	• Evolving concepts of AVNRT:	
	Insights into the anatomy and physiology	14
	• Classification and Types of AVNRT	18
	• Epidemiology of AVNRT	
	• Clinical Manifestations of AVNRT	
	Differential diagnosis	
	Management	41
	Catheter Ablation of AVNRT	
	• Ablation of AVNRT with the anterior approach	
	• Selective slow pathway ablation of AVNRT	
	(The posterior approach)	61
	• Percutaneous cryothermal ablation of AVNRT	
	• Laser Catheter coagulation for ablation of AVNRT	
	• Adjunctive ICE to guide slow pathway ablation	
	• The use of CARTO to guide RF ablation of AVNRT	
IV.	Patients &methods	
V.	Results	
VI.	Discussion	
VII.	Conclusion	177
VIII.	Recommendations	179
IX.	Study limitations	180
X.	Summary	181
XI.	References	186
XII.	Appendix	219
XIII.	Master table	
XIV.	Errata	
XV.	Arabic Summary	

<u>List of Figures</u>

Figure no.	Figure title	Page
Fig. 1	Diagram of the heart showing the impulse generation and impulse conducting systems.	6
Fig. 2	The important atrial landmarks	8
Fig. 3	This preparation shows the orientation of the major muscle bundles	9
Fig. 4	Mechanism of a re-entry circuit.	14
Fig. 5	A normal AV conduction curve	16
Fig. 6	A typical AV conduction curve from a patient with AV nodal reentrant tachycardia	17
Fig. 7A	Slow–fast AVNRT with alternating retrograde conduction intervals.	21
Fig. 7B	Slow–slow AVNRT with alternating retrograde conduction intervals.	23
Fig. 8	Measurement of H-At (left panels) and H-Ap (right panels) in patients with Slow/Slow AVNRT and Slow/Fast AVNRT	23
Fig. 9	ECG pattern of typical AVNRT	29
Fig. 10	Surface ECG (monitor lead) during AVNRT and schematic representation of tachycardia circuits	30

Fig. 9	Initial evaluation of patients with suspected tachycardia	31
Fig. 12	Differential diagnosis for narrow QRS tachycardia.	34
Fig. 13	Responses of narrow complex tachycardias to adenosine	45
Fig. 14	Adenosine triphosphate (ATP) test	46
Fig. 15	Acute management of patients with hemodynamically stable and regular tachycardia	47
Fig. 16	Target site locations for the ablation of the fast and slow pathways of atrioventricular nodal reentrant tachycardia (AVNRT)	62
Fig. 17	Examples of multicomponent atrial electrograms.	64
Fig. 18	Possible slow pathway potentials.	65
Fig. 19	Anatomic ablation sites in right anterior oblique view of Koch s triangle.	67
Fig. 20	The division of the ablation area into 6 target regions (P1-A2)	68
Fig. 21	Schematic representation of effective target sites for slow pathway ablation in relation to Koch s triangle in RAO view	69
Fig. 22	AV nodal function curve before and after complete ablation of the slow pathway of typical AVNRT.	72
Fig. 23	Example of an RF lesion created after single application of 30 W for 30 seconds as visualized before and after application with a 6.2F, 12.5-MHz ICE catheter	88

Fig. 24	Example of unsuccessful lesion placed posteriorly between coronary sinus ostium (CS) and tricuspid annulus (ICE imaging)	89
Fig. 25	Activation map of both ventricles in a case of atypical AVNRT showing the earliest activation below the His bundle and corresponds to the exit of the slow pathway	90
Fig. 26	Position of catheters at start of EPS. Case no.(20)	96
Fig. 27	Basic interval measurements	101
Fig. 28	Intracardiac tracing showing AVNRT. Case No. (6)	103
Fig. 29	The division of the ablation area into 6 target regions	103
Fig. 30	Anatomic ablation sites in right anterior oblique view of Koch s triangle.	103
Fig. 31	Ablation site in RAO. Case no.11	105
Fig. 32	Ablation site in RAO. Case no. 11	105
Fig. 33	Intracardiac recording showing junctional rhythm.	108
Fig. 34	Echo picture showing E/A ratio	110
Fig. 35	Echo picture showing IVRT	110
Fig. 36	Echo picture showing TVI doppler sample on the TV annulus (Septal wall (lt.) & RV free wall (Rt.))	111

Fig. 37	Sex distribution of the study population	112
Fig. 38	Symptomatology of AVNRT in the study group.	114
Fig. 39	Methods of termination of the clinical tachycardia.	116
Fig. 40	Prophylactic drugs used in the study group	117
Fig. 41	Intracardiac recording during atrial pacing with extrastimulation notice that the last paced beat () was conducted to the ventricle via the slow pathway i.e. AH jump and the A and V waves cannot be discriminated during tachycardia.	121
Fig. 42	Methods of Induction of AVNRT in the studied group	122
Fig. 43	Methods of termination of AVNRT in the studied group	123
Fig. 44	Successful ablation sites.	125
Fig. 45	ROC curve for sensitivity and specificity for Junctional Rhythm	128
Fig. 46	Pattern of start & end of JR during RF application	129
Fig. 47	ROC curve for sensitivity and specificity for shape of (a) wave	132
Fig. 48	ROC curve for sensitivity and specificity for a/v ratio 0.5	134
Fig. 49	Comparison between sensitivity and specificity of the EP criteria of successful ablation site.	136

Fig. 50	Comparison between positive predictive	136
	value, negative predictive value and	
	diagnostic accuracy of the EP criteria of	
	successful ablation site	
Fig. 51	Mean level of CPK immediately and after 8	140
	hours from the procedure	
Fig. 52	Echodoppler changes following RF ablation	144
	in the study group.	
Fig. 53	TVI changes following RF ablation in the	145
	study group	
Fig. 54	Resting ECG.	220
Fig. 55	ECG during tachycardia showing narrow	220
	complex regular SVT	
Fig. 56	Resting intracardiac recording	220
Fig. 57	Intracardiac recording showing AVNRT.	221
Fig. 58	Intracardiac recording showing fast	222
	Junctionl rhythm	
Fig. 59	Intracardiac recording showing complete	222
	heart block.	
Fig. 60	Intracardiac recording showing 2:1 heart	223
	block	
Fig. 61	Intracardiac recording showing 2° Mobitz	223
	type I (Wenckbach) heart block	
Fig. 62	Intracardiac recording showing another	224
	example of 2° Mobitz type I (Wenckbach)	
	heart block	
Fig. 63	Final intracardiac ECG with normal AV	224
	conduction	
Fig. 64	Surface ECG at the start of the EPS.	225
Fig. 65	Intracardiac recording at start of the EPS.	225
Fig. 66	ECG during tachycardia; note the pseudo s	226
	in V5, pseudo r in , III, V1	

Fig. 67	Intracardiac recording showing atrial pacing	226
	with extrastimualtion with the third beat	
	being of S2 followed by occurrence of AH	
	jump and induction of tachycardia	
Fig. 68	Overdrive ventricular pacing to terminate	227
	tachycardia.	
Fig. 69	Intracardiac recording prior to RF ablation	227
	at M1 position showing a/v ratio < 0.5,	
	multicomponent a wave.	
Fig. 70	Runs of JR occurring while applying RF	228
	pulses.	
Fig. 71	Another intracardiac recording of JR during	228
	RF ablation of the slow pathway.	
Fig. 72	Intracardiac recording at end of RF ablation	229
	showing prolonged AH interval	
	corresponding to first degree HB on surface	
	ECG.	
Fig. 73	Intracardiac recording at end of the EPS	229
	showing normalization of the AV	
	concuction.	
Fig. 74	Post ablation ECG at end of study.	230
Fig. 75	EPS system in Ain Shams university	231
	specialized hospital EPS lab.	
Fig. 76	Stimulator in Ain Shams university	231
	specialized hospital EPS lab.	
Fig. 77	Midas EPS system in Ain Shams university	232
	hospital EPS lab.	
Fig. 78	Medtronic Stimulator in Ain Shams	232
	university hospital EPS lab.	
Fig. 79	Different catheters used during the EPS	233
	including RF ablation catheter (upper left),	
	quadripolar catheters (upper right & lower	
	right), Decapolar catheter (lower left)	

Fig. 80	Stockert Ablator used for RF ablation.	233
Fig. 81	Nihon Khoden Defibrillator used for	234
	external monophasic cardioversion	

<u>List of tables</u>

Table no.	Table title	Page
Tab. 1	Classification of AVNRT types	21
Tab.2	Recommendations for Long-Term Treatment of Patients With Recurrent AVNRT	52
Tab. 3	History of the use of Radiofrequency Energy for therapeutic lesion formation	56
Tab. 4	Possible biological effects of RF ablation	57
Tab. 5	The weight and height of the study group	113
Tab. 6	Symptomatology of AVNRT in the study group	114
Tab. 7	Resting electocardiographic criteria of the study group.	117
Tab. 8	Electocardiographic criteria of the study group during tachycardia.	118
Tab. 9	ST elevation in aVR during tachycardia	118
Tab. 10	Comparison between electrophysiological measurements before and after ablation for the studied group.	120
Tab. 11	Different sites of attempts of RF ablation of AVNRT	124
Tab. 12	Successful ablation sites.	125
Tab. 13	Correlation between occurrence of junctional rhythm and successful ablation trial.	127

Tab. 14	Correlation between shape of (a) wave and successful ablation trial.	131
Tab. 15	Correlation between a/v ratio 0.5 and successful ablation trial.	133
Tab. 16	Comparison between EP criteria of successful ablation sites.	135
Tab. 17	The physical parameters of the RF current used with successful ablation trials	137
Tab. 19	Patients who had the outpatient follow up	141
Tab. 20	Comparison between echocardiographic measurements before and after ablation for the studied group.	143
Tab. 21	Holter parameters analysed during the follow up	146

ACKNOWLEDGMENT

I would like to express my sincere gratitude to **Prof. Dr. Wagdy Galal**, Professor of Cardiology, Ain Shams University, for his great support and stimulating views. His meticulous supervision and continuous encouragement pushed me to produce good valuable work. This indeed is a debt I could not ignore, or forget.

A special tribute and appreciation to **Prof.Dr. Samir Wafa and Prof. Dr. Mervat Abo El Maaty,** Professor of Cardiology, Ain Shams University, for their uninterrupted care and advice. Their active guidance and close supervision were of great psychological support throughout this work.

I would also like to record my thanks to **Prof.Dr. Hussein**Shallan and **Dr. Ahmed F. Tamara**, Lecturer of Cardiology, Ain Shams
University, for their scientific assistance in this thesis, active guidance
and close supervision.

Special thanks to **EPS group** who helped us throughout this work.

Finally, I cannot forget the help of the medical staff and nursing in our Cardiology department for their cooperation in the practical part of this work.

بسم الله الرحمن الرحيم

INTRODUCTION

Atrio-ventricular Nodal re-entrant tachycardia (AVNRT), the most common form of paroxysmal supraventricular tachycardia, is a fascinating complex of arrhythmias (Lockwood et al, 2004).

It is the operative mechanism in up to 60% of patients presenting with paroxysmal supraventricular tachycardia (Fogoros, 1998).

Intracardiac electrogram recordings and programmed electrical stimulation have helped a great deal in improving our understanding of this arrhythmia. The evolution of this knowledge has led to the development of rational therapy, including transcatheter ablation using radiofrequency energy for treatment of AVNRT (**Akhtar et al., 1993**).

Catheter-based radiofrequency (RF) energy has become the preferred modality for tachyarrhythmia ablation and has proven to be highly effective in the treatment of atrioventricular nodal re-entrant tachycardias (AVNRT), accessory pathway tachycardias, atrial flutter, atrial fibrillation, and ventricular tachycardias. However, lesions created by RF energy which inevitably involve some degree of tissue disruption, are irreversible and thrombogenic (Anfinsen et al., 2001).

Radiofrequency ablation of the slow pathway has become first-line therapy for the elimination of AV nodal reentrant tachycardia (AVNRT). Slow pathway ablation is guided by a combination of fluoroscopic landmarks, electrogram morphology, and the induction of accelerated junctional tachycardia (AJT) during the application of radiofrequency energy (Skanes et al., 2000).

Also, atrioventricular nodal reentrant tachycardia (AVNRT) is one of the most common forms of supraventricular tachycardia in the pediatric population. Selective radiofrequency current ablation/modulation of the slow pathway is a safe and curative treatment of AVNRT in young patients (**Kriebel et al., 1989**).

During ablation of the slow pathway in AVNRT, and of (para)septally located accessory pathways, there is an increased risk of right bundle branch block or inadvertent complete AV-block, as these pathways run in close proximity to the atrioventricular node (**Lipscomb et al., 2001**).

Anteroseptal approach of slow pathway ablation is associated with a higher incidence of transient AV block and AVNRT recurrence than other approaches. Residual dual atrioventricular nodal pathway after apparently successful ablation also carries a high risk of recurrence (Wang et al., 2002).

Although no significant changes were observed in systolic function after RF ablation, this procedure may have some detrimental effects on ventricular diastolic function parameters (Eksik et al., 2004).

Persistent inappropriate sinus tachycardia may evolve as a complication after radiofrequency (RF) fast pathway ablation of atrioventricular nodal reentrant tachycardia (AVNRT). Parasympathetic denervation may serve as one of the possible mechanisms. RF ablation of the slow pathway in AVNRT does not change parameters of HR and heart rate variability significantly by means of serial 24-hour Holter recordings (**Purerfellner et al., 1998**).