

# 127, 17 27, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20









## جامعة عين شمس

التوثيق الالكتروني والميكروفيلم



نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات



## يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %



ثبكة المعلومات الجامعية





Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص



## The Use of Dissolved-Air Flotation in Reducing The Polutant Load on The Rapid Sand Filtration.

By

Mohamad Ragab El-Adawy

B.Sc. Civil Engineering, El-Mansoura University, 1992

a Thesis

Submitted in Partial Fulfillment for the Requirements of The Degree of Master of Science.

 $g_n$ 

**Public Works Engineering** 

Supervisors

Prof. Dr.

Ahmad Fadel Ahmad Ashry.

Prof. of Sanitary Engineering Faculty of Engineering El-Mansoura University.

Prof. Dr.

Dr.

Said Ebrahim

Faculty of Engineering. El-Mansoura University.

Mohamad Esmail

Faculty of Science El-Mansoura University.

1-1V0

1997



El-Mansoura University. Faculty of Engineering. Public Works Dept.

## The Use of Dissolved-Air Flotation in Reducing The Polutant Load on The Rapid Sand Filtration.

By

Mohamad Ragab El-Adawy

B.Sc. Civil Engineering, El-Mansoura University, 1992

a Thesis

Submitted in Partial Fulfillment for the Requirements of The Degree of Master of Science.

 $g_n$ 

**Public Works Engineering** 

Supervisors

Prof. Dr.

Ahmad Fadel Ahmad Ashry.

Prof. of Sanitary Engineering Faculty of Engineering El-Mansoura University.

Prof. Dr.

 $\mathfrak{D}_{r}$ .

Said Ebrahim

Faculty of Engineering. El-Mansoura University.

**Mohamad Esmail** 

Faculty of Science El-Mansoura University.

#### EXAMINATION COMMITTEE

#### Researcher Name:

Mahamad Ragab El-Adawy

#### Thesis Title:

The Use of Dissolved-Air Flotation in Reducing The Polutant Load on The Rapid Sand Filtration.

#### **Examination Committee**

| Name                            | Position                                                                            | Signature |
|---------------------------------|-------------------------------------------------------------------------------------|-----------|
| Prof. Dr.<br>Ezzat Abd El-Shafy | Professor of Sanitary Engineering, Faculty of Engineering, Cairo University.        | [22]      |
| Prof. Dr.<br>Fathy Awad Mansaur | Faculty of Science,<br>El-Mansoura University.                                      | Zath      |
| Prof Dr.<br>Ahmad Fadel Ashry   | Professor of Sanitary Engineering, Faculty of Engineering, El- Mansoura University. | A         |

#### **ACKNOWLEDGMENT**

My gratitude and thankfulness to my major adviser, Prof. Dr. Chmad Fadel Chmad Chhy, El-Mansoura University for Excellent Practical and theoretical experience and for all his encouragement, guidance, Patience, and support througout the coarce of this study.

I should like to thank my supervisor, Prof. Dr. Said Eberahim, and Dr. Mahamad Esmail, El-Mansoura University for their considerable guidance, criticism, and encouragement.

My thank to my father, mother, family, wife, children, and my friends for their help during the preparation of thesis.

## 

important process in the water Flotation is an described Flotation be treatment. can as a separation process in which gas bubbles attach to sollid particles to cause the apparent density of the bubblessolid agglomerates to be less than that of the water, thereby allowing the agglomerate to float to the surface. Different methods of producing gas bubbles give rise to flotation processes: different types of electrolytic dissolved-air dispersed-air flotation. and flotation, flotation.

A pilot plant was constructed in Sandoop water treatment plant to evaluate dissolved air flotation for treating raw surface water. The raw water was brought El-Bahr El-Sagheir branch from the Nile river.

Dissolved-Air flotation is regarded as "high-rate" process because of the relatively high surface loadings possible. This label also implies it is compact process and so occupies less area. That is important where land is at a premium. This process is also likely to need shallower and smaller tanks, which is important in coping with preparing foundations in difficult sites. Dissolved-air flotation is likely to be less expensive than floc-blanket sedimentation.

#### CONTENTS

|                                             | Page |
|---------------------------------------------|------|
| AKNOWLEDGMENT                               | -    |
| CONTENTS                                    | i    |
| LIST OF FIGURES                             | iv   |
| LIST OF TABLES                              | vi   |
| LIST OF SYMBOLS                             | vii  |
| CHAPTER 1: INTRODUCTION                     |      |
| 1.1 GENERAL                                 | 1    |
| 1.2 Scope and Objective of the Present Work | 3    |
| 1.3 Thesis Contents                         | 3    |
| CHAPTER 2: <u>LITERATURE REVIEW</u>         |      |
| 2.1 Water Characteristics                   | 5    |
| 2.1.1 Physical Water - Quality              | 5    |
| 2.1.1.1 Suspended Solids                    | 5    |
| 2.1.1.2 Turbidty                            | 5    |
| 2.1.1.3 Color                               | , 6  |
| 2.1.1.4 Taste and Odor                      | 7    |
| 2.1.1.5 Algae                               | 7    |
| 2.1.2 Chemical Water Quality Parameters     | 7    |
| 2.1.2.1 Total Dissolved Solid (TDS)         | 8 .  |
| 2.1.2.2 Alkalinity                          | 8    |
| 2.1.2.3 Hardness                            | 8    |
| 2.1.2.4 Fluoride                            | 9    |
| 2.1.2.5 Metals                              | 9    |
| 2.1.2.6 Organic                             | 10   |
| 2.2 Flotation                               | 10   |
| 2.2.1 History of Flotation                  | 10   |
| 2.2.2. Types of Flotation Processes         | 12   |
| 2.2.2.1 Electrolytic Flotation              | 13   |
| 2.2.2.Dispersed - Air Flotation             | 13   |
| 2.2.2.3 Dissolved - Air Flotation           | 13   |
| 2.2.3 Theory of Dissolved - Air Flotation   | 16   |
| 2.2.4 Mechanism of Flotation                | 16   |
| 2.2.5 Solubility of Air in Water            | 17   |
| 2.2.6 Effect of Bubble Size                 | 17   |
| 2.2.7 Types of Flotation Tanks              | 21   |
| 2.2.7.1 Cirular Tanks                       | 21   |
| 2.2.7.2 Rectangular Tanks                   | 21   |
| 2.2.8 Combined Flotation and Filtration     | 24   |
| 2.2.9 Air Saturation Systems                | 24   |
| 2.210 Factors Influencing Dissolved - Air   | 27   |
| Flotation Efficiency                        |      |
| 2.2.10.1 Coagulation                        | 27   |

i

|                                                                                                       | Page     |
|-------------------------------------------------------------------------------------------------------|----------|
| 2.2.10.2 Flocculation                                                                                 | 28       |
| 2.2.10.3 Flocculation Time                                                                            | 28       |
| 2.2.10.4 Degree of Agitation                                                                          | 29<br>20 |
| 2.2.11 Hydraulic Flocculation                                                                         | 29<br>30 |
| 2.2.12 Quantity of Air Required for flotation                                                         | 30<br>31 |
| 2.2.13 Design of Recycle Flow Pressurization System 2.2.13.1 Air Solubility and Pressure Calculations | 32       |
| 2.2.13.1 Air Solubility and Pressure Calculations 2.2.13.2 Consideration of Hydraulic Rate in Design  | 35       |
| 2.2.14 Performance of Dissolved - Air Flotation Plants                                                | 38       |
| 2.2.14 Tenormance of Bissolved 7th House Flants  2.2.14.1 Treatment of lowland Minera - Bearing       | 50       |
| (High-Alkalinity) River Water.                                                                        | 39       |
| 2.2.14.2 Treatment of Colored (Low - Alkalinity)                                                      | 40       |
| Stored water                                                                                          |          |
| 2.2.14.3 Treament of Algae - Bearing (High -                                                          |          |
| Alkalinity) Stoed Water                                                                               | 41       |
| CHAPTER 3: <u>METHODOLOGY</u>                                                                         |          |
| 3.1 Site Description                                                                                  | 43       |
| 3.2 Sources of Raw Water                                                                              | 43       |
| 3.3 Raw Water Supply System                                                                           | 43       |
| 3.4 Pilot Plant Description                                                                           | 46       |
| 3.4.1 Chemical Feed System                                                                            | 46       |
| 3.4.2 Flocculation Tank                                                                               | 46       |
| 3.4.3 Flotation System .                                                                              | 46       |
| 3.4.4 Filter System                                                                                   | 47       |
| 3.4.5 Filter Media                                                                                    | 49       |
| 3.4.6 Filter Underdrainage System                                                                     | 49       |
| 3.5 Miscellaneous Equipment and Materials                                                             | 49<br>40 |
| 3.5.1 Head Losses Measurments                                                                         | 49<br>51 |
| 3.5.2 Chmicals                                                                                        | 51       |
| 3.5.3 Ferric Chlorid Optimum Dose                                                                     | 51       |
| 3.5.4 Instruments 3.5.5 Qualiyt Control                                                               | 51       |
| 3.5.6 Flow                                                                                            | 52       |
| 3.5.7 Turbidity                                                                                       | 52       |
| 3.5.8 Chemical Feeding                                                                                | 52       |
| 3.5.9 PH meter                                                                                        | 52       |
| 3.5.10 Pilot Plant Opeeration                                                                         | 52       |
| CHAPTER 4: RESULTS AND DISCUSSION                                                                     |          |
| 4.1 General                                                                                           | 55       |
| 4.2 First Group                                                                                       | 55       |
| 4.2.1 Run #1                                                                                          | 56       |
| 4.2.2 Run #2                                                                                          | 58       |
| 4.2.3 Run #3                                                                                          | 58       |
| 4.2.4 Run #4                                                                                          | 61       |
| 4.2.5 Run #5                                                                                          | 61       |

|                                                              | Page |
|--------------------------------------------------------------|------|
| 4.2.6 Run #6                                                 | 61   |
| 4.2.7 General Discussion From Run # 1 to Run # 6 in          | 66   |
| Group #1 4.3 Second Group                                    | 66   |
| 4.3.1 Run #1                                                 | 67   |
| 4.3.2 Run #2                                                 | 69   |
| 4.3.3 Run #3                                                 | 69   |
| 4.3.4 Run #4                                                 | 72   |
| 4.3.5 Run #5                                                 | 72   |
| 4.3.6 Run #6                                                 | 72   |
| 4.3.7 General Discussion From Run # 1 to Run # 6 in Group #2 | 77   |
| 4.4 Third Group                                              | 77   |
| 4.4.1 Run #1                                                 | 78   |
| 4.4.2 Run #2                                                 | 80   |
| 4.4.3 Run #3                                                 | 80   |
| 4.4.4 Run #4                                                 | 83   |
| 4.4.5 Run #5                                                 | 83   |
| 4.4.6 Run #6                                                 | 83   |
| 4.4.7 General Discussion From Run # 1 to Run # 6 in          | 88   |
| Group #3                                                     |      |
| 4.5 Fourth Group                                             | 88   |
| 4.5.1 Run #1                                                 | 89   |
| 4.5.2 Run #2                                                 | 91   |
| 4.5.3 Run #3                                                 | 91   |
| 4.5.4 Run #4                                                 | 94   |
| 4.5.5 Run #5                                                 | 94   |
| 4.5.6 Run #6                                                 | 94   |
| 4.5.7 General Discussion From Run # 1 to Run # 6 in          | 99   |
| Group #4                                                     | 100  |
| 4.6 General Discussion of The Four Groups                    | 100  |
| CHAPTER 5: <u>COMPARATIVE COST ANALYSIS</u>                  |      |
| 5.1 Introduction                                             | 101  |
| 5.2 TCF -DAF - RSF Cost Analysis                             | 102  |
| 5.2.1 Cost Estimation                                        | 102  |
| 5.2.1.1 Construction cost                                    | 102  |
| 5.2.1.2 Operation and Maintrnance Cost                       | 109  |
| 5.3 Compact unit Cost Analysis                               | 110  |
| 5.4 Cost Comparison                                          | 112  |
| CHAPTER 6: CONCLUSION AND RECOMMENDATION                     | 113  |
| APPENDIX (A)                                                 | 115  |
| APPENDIX (B)                                                 | 139  |
| APPENDIX (C)                                                 | 142  |
| ARABIC SUMMARY                                               |      |

iii

### LIST OF FIGURES

| VFigure 1888      | <b>Page</b> € | Description & V.                              |
|-------------------|---------------|-----------------------------------------------|
| (2-1)             | 15            | Schematic Diagram of a Flotation Plant        |
|                   | L             | for Potable Water Treatment.                  |
| (2-2)             | 18            | Mass of Gas Dissolved in Water as a           |
|                   |               | Function of Pressure and Temperature.         |
| (2-3)             | 20            | Rate of Rise of Air Bubbles in Tapwater       |
|                   |               | as a Function of Bubble Size.                 |
| (2-4)             | 20            | Effect of Bubble Size on Flotation Tank Size. |
| (2.5)             | 22            | Schematic Diaram of a Circular                |
| (2 - 5)           | 22            | Flotation Tank.                               |
| (2 - 6)           | 25            | Schematic Diagram of Combined                 |
| (2-0)             | 22            | Flotation - Filtration Plant.                 |
| (2 - 7)           | 36            | Separation of Particle From wastewater        |
|                   |               | by Dissolved Air Flotation.                   |
| (2 - 8)           | 36            | Basic Design Concept of Flotation Unit.       |
| (3 - 1)           | 44            | Location of Sandoop Pumping Station           |
| (3 - 1) (3 - 2)   | 45            | General Layout of Sandoop Water               |
|                   |               | Tretment Plants.                              |
| (3 - 3)           | 48            | Flotation Tank Details.                       |
| (3 - 4)           | 50            | Schematic Flow Diagram For The Filter.        |
| (3 - 5)           | 53            | Pilot Plant Diaram.                           |
| (4-1, 4-2)        | 57            | Run #1, Group #1.                             |
| (4 - 3, 4 - 4)    | 59            | Run #2, Group #1.                             |
| (4 - 5 , 4 - 6)   | 60            | Run #3, Group #1.                             |
| (4 - 7, 4 - 8)    | 62            | Run #4, Group #1.                             |
| (4 - 9 , 4 - 10)  | 63            | Run #5, Group #1.                             |
| (4 - 11 , 4 - 12) | 64            | Run #6, Group #1.                             |
| (4 - 13 , 4 - 14) | 68            | Run #1, Group #2.                             |
| (4 - 15, 4 - 16)  | 70            | Run #2, Group #2.                             |
| (4-17,4-18)       | 71            | Run #3, Group #2.                             |
| (4 - 19, 4 - 20)  | 73            | Run #4, Group #2.                             |
| (4 - 21 , 4 - 22) | 74            | Run #5, Group #2.                             |
| (4 - 23 , 4 - 24) | 75            | Run #6, Group #2.                             |
| (4 - 25 , 4 - 26) | 79            | Run #1, Group #3.                             |
| (4 - 27 , 4 - 28) | 81            | Run #2, Group #3.                             |
| (4 - 29 , 4 - 30) | 82            | Run #3, Group #3.                             |

iv

| Figure            | ", Page" | Description 2000  |
|-------------------|----------|-------------------|
| (4-31,4-32)       | 84       | Run #4, Group #3. |
| (4 - 33 , 4 - 34) | 85       | Run #5, Group #3. |
| (4 - 35, 4 - 36)  | 86       | Run #6, Group #3. |
| (4 - 37, 4 - 38)  | 90       | Run #1, Group #4. |
| (4 - 39, 4 - 40)  | 92       | Run #2, Group #4. |
| (4 - 41 , 4 - 42) | 93       | Run #3, Group #4. |
| (4 - 43 , 4 - 44) | 95       | Run #4, Group #4. |
| (4 - 45 , 4 - 46) | 96       | Run #5, Group #4. |
| (4 - 47, 4 - 48)  | 97       | Run #6, Group #4. |