Estimation of Fetal Birth Weight by Three-Dimensional Ultrasound Volume Measurements of the Fetal Upper-Arm and Thigh

Thesis

Submitted for partial fulfillment of the master degree in Obstetrics and Gynecology

By:

Wael Mohamed El-Sherif

MBB Ch, Y. Y, Mansoura University Resident of Obstetrics and Gynaecology Port Fouad General Hospital

Supervised by

Dr. Hazem Fadel El-Shahawy

Professor of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

Dr. Sherif Hanafi Hussain

Lecturer in Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

Dr. Ghada Mahmoud Mansour

Associate Consultant of Obstetrics and Gynaecology Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my deepest gratitude to **Professor Dr.**Hazem Fadel El.Shahawy, Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, for his kind supervision, valuable advice, faithful support, giving me the privilege and honor of working under his supervision and for clearing many obstacles during this study.

I wish to express my high appreciation and great thanks to **Dr.** Sherif Hanafi Hussain, Lecturer in Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, who helped me to a great extent, for his kind supervision and energetic help in following the details of this work.

I would like also to express my deep gratitude to **Dr. Ghada Mahmoud Mansour**, Associate Consultant of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, for her effort and sharing of references and periodicals without which this work would have been so difficult. I would like also to express my deep gratitude to **Dr. Sayed El. Okda** for his effort and great cooperation in statistics and results of my research.

This work could not have been completed without the great cooperation and assistance of the personnel of the ultrasound dept, especially **Dr. Mohamed Kmal** and the personnel of the labor and delivery word of the hospital of gynecology and obstetrics.

Lastly, I would like to express my great thanks to my family for encouraging me in the organization of this work.

Contents

List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	١
Review of Literature	٦
Patients and Methods	٧٨
Results	人纟
Discussion	١.٢
Summary and Conclusion	١١.
Recommendations	112
References	110
Arabic Summary	

List of Abbreviations

YD US : Two-dimensional ultrasound

Three-dimensional ultrasound

AC : Abdominal circumference

AFI : Amniotic fluid index
AFV : Amniotic fluid volume
BPD : Bi-parietal diameter
CRL : Crown-rump length
EBW : Estimated birth weight

FL : Femur length

FTV : Fetal thigh volume

HAPO : Hyperglycemia and Adverse Pregnancy

Outcomes

HC : Head circumferenceHL : Hummers length

IGF : Insulin like growth factorIUGR : Intrauterine growth restriction

LBW : Low birth weight

LGA: Large for gestational age
LMP: Last menstrual period
MCA: Middle cerebral artery
OFD: Occipito-frontal diameter
SGA: Small for gestational age

SPSS : Statistical package for the social science

TTD : Transverse trunk diameter

US : Ultrasound

VOCAL : Virtual Organ Computer Aided Analysis

List of tables

Table	Title	Page
١	Different formulas for detection fetal weight	01
۲	Parameters gained by YD US at different gestational ages	Λź
٣	Parameters gained by TD US at different gestational ages	٨٥
٤	Distribution of the studied group as regard general data	AY
0	Distribution of the studied group as regard actual birth weight	٨٨
٦	Distribution of the studied group as regard \(D \) ultrasound parameters	٩.
٧	Distribution of the studied group as regard arm and thigh volumes using "D US (VOCAL system)	91
٨	Correlation between actual birth weight versus TD US findings arm and thigh	97
٩	Correlation between actual birth weights versus YD- US findings	9 £
١.	Correlation between T D US (arm volume) versus D US findings	99
11	Correlation between T D US (thigh volumes) versus TD US Findings	1

List of Figures

Fig.	Title	Page
١	Picture of IUGR baby	١٦
۲	Picture of macrosomic baby	٣.
٣	Technique of repeat ultrasound measurements and percentage of error	٥,
٤	Example of anomalies identified in the first trimester by "D Ultrasound	77
0	TD ultrasound images of a fetal face at Y1 weeks' gestation suggestive of a micrognathia	٦٧
٣	YD ultrasound image of the fetal skull in a Y1-week fetus suggesting a small occipital encephalocele	٦٨
٧	Fetal thigh volumetry analyzed using the multiplanar method	٧٢
٨	Fetal thigh volumetry analyzed using the Virtual Organ Computer-aided Analysis (VOCAL) technique	٧٤
٩	Biparietal diameter (BPD) measurement	٧٨
١.	Femur length measurement by two-dimensional ultrasound	٧٩

11	Fetal thigh volume measurement by	۸١
	VOCAL	
١٢	Fetal arm volume measurement by	٨١
	VOCAL	
17"	Sono Ace×A "D/¿D ultrasound	٨٢
	Medison machine	

-iii-List of Figures (Cont.)

Fig.	Title	Page
١٤	Relation between gestational ages and arm volumes	٨٦
10	Relation between gestational ages and thigh volumes	٨٦
١٦	Relation between gestational ages and actual birth weights	٨٦
١٧	Distribution of the studied group as regard the actual birth weight	٨٩

Introduction

The birth weight is an important factor in the outcome of a pregnancy. It is well known that prenatal morbidity and mortality increase in abnormal birth weight range fetuses. They also have poor developmental outcomes. In addition, marked birth traumas have been increased in macrosomic infants. The accurate antenatal measurement of fetal weight is very important. It gives useful information for fetal growth assessment, information that could help to decide the time of delivery, the need for specific obstetrical intervention and delivery at an equipped center (*Schild et al.*, $\gamma \cdot \cdot \gamma$).

Each year, approximately ** percent of the almost *
million infants in the United States are born at the low and
high extremes of fetal growth. Although most low-birthweight
infants are preterm, approximately ** percent are term. In

., ** A,** percent of infants weighed less than **... g at
birth, whereas **, ** percent weighed more than **... g. The
proportion of those < **... g has increased by *** percent
since **, ** and by ** percent since **... At the same time,

the incidence of macrosomia-defined as birthweight $> \xi \cdots g$ continues to decline as the distribution has shifted toward
lower weights (*Martin et al.*, $\gamma \cdots q$).

Fetal macrosomia has been defined as a birth weight of greater than the ninetieth percentile for gestational age after correcting for neonatal ethnicity. Macrosomia is associated with many adverse outcomes, for example prolonged labor, preterm labor, increase risk of traumatic damage, increase risk of shoulder dystocia, increase risk of cesarean section, fetal distress, birth asphyxia, brachial plexus injury, stillbirth, cephalhaematoma, etc. These adverse outcomes may associate with high rate of perinatal morbidity and mortality (*McLean et al.*, Y...A).

Intrauterine growth restriction and macrosomia are not uncommon in obstetrics and carry an increased risk of perinatal mortality and morbidity. Fetal growth restriction is the second leading contributor to the perinatal mortality rate. The incidence of intrapartum asphyxia in cases complicated by IUGR has been reported to be as high as •• percent. Identification of fetal weight is crucial because proper

Introduction and Aim of The Work

evaluation and management can result in a favorable outcome (Chien et al., Y·11).

small-for-gestational-age (below Both the \ • th percentile) and low birthweight (<\(\forall \cdot\)\cdot\(\gamma\) infants associated with an increased risk of complications during labor (attributable to preterm delivery, intrauterine growth restriction (IUGR), or both). Complications include intrapartum fetal distress, intrapartum asphyxia, meconium aspiration, hypoglycemia, hypocalcemia, hypothermia, and polycythemia. The consequent neonatal mortality rate for small-forgestational-age infants born at Th weeks is one percent vs. • , T percent in infants with appropriate birthweights (Leveno and Gilstrap, $\gamma \cdot \cdot \cdot 9$).

Several methods that are commonly used to predict fetal weight include fundal height measurement and ultrasonography. To date, two-dimensional ultrasound (Y-D US) becomes an essential tool for fetal weight evaluation (Callen, Y···).

Since the development of three-dimensional ultrasound (*-D US), many investigators use fetal volume for

improvement in birth weight prediction formula. Even though many studies have shown improvement in prediction, the use of three-dimensional ultrasound for calculated birth weight is not popular in general usage due to the technical difficulty such as obtaining the optimal plane for the measurement and it's time consuming process. The recent development of computer software has extended the capabilities of three-dimension ultrasound to gain more appropriate pictures (Schild et al., Y··V).

Two dimensional sonographic estimation is an accurate way (mean error V, \-\-\-\-\-\-\-\) to measure various fetal parameters, particularly biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), transverse trunk diameter (TTD) and femur length (FL) however, most studies documented poor accuracy among small and excessive fetal weight populations (*Leveno and Gilstrap*, Y · · · 9).

Now three-dimensional ultrasonography can be used for fetal weight estimation by measurement of the upper-arm and thigh volumes. Previous studies concluded that threedimensional ultrasonographic estimation of fetal weight by upper-arm and thigh volume measurements were better than

Introduction and Aim of The Work

two-dimensional ultrasonographic estimation (*Marussi et al.*, $\gamma \cdot \gamma \cdot \gamma$).

Aim of the work

Assessment of the role of Three-Dimensional Ultrasound in estimation of the fetal weight using arm and thigh volumes by VOCAL (Virtual Organ Computer Aided Analysis) program in comparison to regular standards.

Introduction and Aim of The Work	