CairoUniversity
Faculty of Veterinary Medicine
Department of Poultry Diseases

FURTHER STUDIES ON BACTERIAL DISEASES CAUSING HIGH MORTALITY IN BROILER CHICKS

A thesis presented by

EMAN ANTER MORSY IBRAHIM

B.V. Sc. (2008) Cairo University M.V. Sc. (2012) Cairo university

For the degree of Ph.D.

Veterinary Medical Sciences
(Poultry and Rabbits Diseases)

Under Supervision
Of

Prof. Dr. Diaa El-Dein Gad Ahmed Khelfa

Professor of Poultry and Rabbit Diseases

Department of Poultry Diseases

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Wafaa Abd El-Ghany Abd El-Ghany

Professor of Poultry and Rabbit Diseases

Department of Poultry Diseases

Faculty of Veterinary Medicine

Cairo University

Name: Eman Anter Morsy Ibrahim

Nationality: Egyptian
Birth date: 11/6/1986, Fayoum

Degree: Ph.D., 2015

Specification: Poultry and Rabbit Diseases

Supervisors:

Prof. Diaa El-Dein Gad Ahmed Khelfa Prof. Wafaa Abd El-Ghany Abd El-Ghany

Thesis Title:

"FURTHER STUDIES ON BACTERIAL DISEASES CAUSING HIGH MORTALITY IN BROILER CHICKS"

ABSTRACT

A monitoring study was carried out on one hundred and two broiler flocks located in nine Egyptian governorates during the period of 2012 - 2014 in a trial for isolation of responsible aerobic bacterial agents causing high chicks mortality in such flocks. The highest mortality percent was recorded in Cobb breed on the 12th day of age in Beni-Suef while the lowest mortality percent recorded in Sasso breed on the 25th day of age in Sharkia. Bacteriological investigation revealed that the Escherichia coli isolates were the predominant organism (42.9%) followed by Salmonella (21.7%) Klebsiella pneumonia(10.1%), Proteus mirabilis(6.2%) and Pseudomonas aeruginosa (4.5%). Serological identification of E. coli isolates revealed that both O₁₅₈ and O₇₈ serogroups were the most predominant isolates (18.6%) each, followed by serogroups $O_{27}(10.8\%)$, O_{26} (6.8%), O_{18} and $O_{55}(3.9\%)$, each, O_{6} , O_{111} and O_{159} (2.9%), each, finally serogroup O₁, O₈, O₁₅, O₄₄, O₁₁₄, O₁₁₉, O₁₄₂, O₁₅₃, O₁₆₆ and O₁₆₉ (1.5%), each while un-typable strains were (13.7%). Salmonella serological identification revealed that Salmonella Infantis (SI) was the most predominant isolates (27.2%) followed by Salmonella Virchow (SV) (23.4%), Salmonella Enteritidis (SE)(20.8%), Salmonella Gallinarum (SG) (14.3%), Salmonella Kentucky (SK) (10.4%) and Salmonella Typhimurium (ST) (3.9%). In vitro testing of the phenotypic properties of the 204 E. coli isolates, it was found that all tested isolates were Congo red positive. Conventional and a real-time PCR assay were used for the detection of rfbS, flijB, fliC, stmm and sefA genes of SG, SI, SK, ST and SE respectively where they sequenced and submitted on gene bank with accession numbers KP730600, KP760484, KP760485, KP763723 and KP793717. The genetic diversity of the submitted genes was compared with sequences deposited in the NCBI database to infer phylogenetic relationships between them. The results of multiplex PCR for E. coli grouping were E. coli O₁ was grouped in Enterotoxogenic group, E. coli O₂₆ and E. coli O₁₅₈ were grouped in Enteropathogenic, also E. coli O₁₅₈ was grouped in Enterotoxogenic group, E. coli O₇₈ was grouped in Enterotoxogenic group, E. coli O₂₇ grouped in Enteropathogenic, Enterotoxogenic and Shiga toxin producing E. coli. The results of pathogenicity of different isolated Salmonella species in day old SPF chicks revealed that, the clinical signs and PM lesions were variable in their time of onset, severity and duration in different Salmonella spp. The mortality percent was in ST (84%), SG (66%), SE (54%), SK (16%) and SI (8%). No mortalities were recorded in chicks inoculated with SV and un-inoculated controls. Analysis of the level of fecal shedding on 21 DPI revealed 100% in Salmonella re-isolation for all serogroups except SV (90.9%) and SG (27.3%), while on 28DPI SE was the highest in fecal re-isolation rate followed by SV, SI, SK and SG with a percentage of 100%, 70.7%, 66.7%, 25.6% and 0% respectively. The microscopic lesions revealed that, the lymphoid organs (bursa, thymus, spleen and cecal tonsils) were severely affected in SV, SK and SI infected groups while the lesions in S.T, S.G and SE infected groups were mostly related to heart, liver, cecum and intestine. The pathogenicity of five E. coli isolates $(O_1, O_{26}, O_{27}, O_$ O₇₈, O₁₅₈) were investigated in day old SPF chicks by crop gavaged and subcutaneous inoculation (sc). Various clinical signs, post mortem and histopathological pictures were recorded. The mortality percent in sc inoculated group was 100% except in E. coli O₁ and O₂₇ groups in which the mortality percent was 80%. The highest mortality percentage in orally inoculated E. coli group was recorded in O_{78} infected group, followed by O_{26} and O_{158} , O_{27} then O₁ group with a percentage of 60%, 53.3%, 53.3%, 40% and 13.3% respectively. E. coli and Salmonella infections in chicks significantly reduced feed intake, altered growth of the whole body. Study the effect of some E. coli and Salmonella isolates on broiler immune system showed that the gross observations of bursa of fabricous, thymus and spleen were atrophied with variable degree in the different inoculated Salmonella and E. coli serovars during 3-4 post infection, which confirmed by measuring of lymphoid organs body weight ratio and histopathological examination. Also infected birds experienced depressed responsiveness to viral vaccines (Newcastle disease vaccine (NDV), infectious bronchitis (IB), avian influenza (AI) and infectious bursal disease (IBD) in comparing with uninfected controls for 2-3weeks post vaccination, indicating that E. coli and salmonella infection have a transient effect on immune system which interferes with the ability of the immune system to respond humorally to antigenic stimuli.

Keywords: Broiler chicks, Salmonella, E. coli, mortalities, PCR, pathogenicity, immune system.

Dedication

I dedicate this work to

My father soul

My husband Haitham, my kids Lojain &

Anas,

My mother and father in law,

My mother, my brother and sister

ACKNOWLEDGEMENT

First of all I thank **Allah** who gave me this opportunity to achieve this work and I am praying to bless this work with his acceptance.

I would like to express my gratitude and deepest thanks to **Prof. Dr. Diaa El-Dein Gad**Ahmed Khelfa, Professor of Poultry Diseases, Faculty of Veterinary Medicine, Cairo
University for his strict supervision, valuable help, kind cooperation and guidance in
every step of this work and encouragement given to me during this work.

I would like to express my gratitude and deepest thanks to **Prof. Dr. M. H. Afify, Dr. Reham M. Abd-El Salam** and **Dr. Mrawa M. Salah Khattab**, Dep. of Pathology, faculty of Veterinary Medicine, Cairo University for their constant encouragement and support throughout the work.

I would like to express my gratitude and deepest thanks to **Dr. Khaled Sayed Shaban**, assistant prof., Dep. of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University for his constant encouragement and support throughout the work.

I would like to express my gratitude and deepest thanks to **Prof. Dr. Fathi Farouk**, the previous dean of Faculty of Veterinary Medicine, Cairo University, for his constant encouragement and support throughout the work.

I would like to express my gratitude and deepest thanks to **Prof. Dr. Magdy El Kady**, Prof. of Poultry Diseases and dean of Faculty of Veterinary Medicine, Beni-swief University for his constant encouragement and support throughout the work.

Best regards to my colleagues, **Dr. Heba Mohammed Salem**, **Dr. Hassaneen Abo Zaid**, **Dr. Dalia Anwar Hamza**, **Dr. Esraa abd El-maged** and **Dr. Basem Ahmed**, Faculty of Veterinary Medicine, Cairo University for their constant encouragement and support throughout the work.

Finally, my thanks are sent to every kind hand that extended to help me to allow the fulfillment of this work.

Contents

Title	Pages
1- Abbreviation	I-II
2- List of tables	III-V
3- List of figures	VI-XI
4- Introduction	1-3
5- Review of literature	4-44
6- Material and methods	45-72
7- Experiments and results	73-243
8- Discussion	244-271
9- Conclusion	272-273
10-English summary	274-276
11-References	277-303
12- Arabic summary	304-305

LIST OF ABBREVIATIONS

Abbreviation	Meaning
Ab.	antibody
ADH	Argenine dihydrolase
AI	Avian influenza.
AMY	amygdalin
APEC	Avian pathogenic E. coli
ARA	arabinose
BM	Bone marrow
bp	Base pair
b.wt.	Body weight
°C	Celsius
CFU	Colony forming unit
CIT	citrate
CR	Congo red
C.S	Clinical signs
DNA	Deoxyribonucleic acid
dNTPs	Deoxy ribonucleotidestri phosphatase
DPI	Day post infection
D. W.	Distilled water
E. coli	Escherchia coli
ELISA	Enzyme linked immune-sorbent assay
EMB	Eosinemethylen blue
Fig.	Figure
GEL	gelatin
GLU	glucose
Gm.	Gram
H. gland	Harderian gland
H2S	Hydrogen sulide
gp.	group
HA	haemagglutination
HI	Haemagglutination inhibition
hrs.	Hours
IB	Infectious bronchitis
IBD	Infectious bursal disease
IND	indole
INO	inositol
Kg.	Kilogram
LDH	Lysine decarboxylase
MAN	mannitol
MBW	Mean body weight
MEL	melibiose
Mt.	Mortality

NCBI	National center of biotechnology information
ND	Not detected
NDV	Newcastle disease virus
No.	Number
ODC	Ornithine decaboxylase
ONPG	B -galactosidase
P. aeruginosa	Pseudomonas aeruginosa
PCR	Polymerase chain reaction
P.I.	Post infection
PM	Post mortem
P. mirabilis	Proteus mirabilis
RHA	rhamnose
rpm	Revolution per minute
SAC	sucrose
sc	Subcutaneous
SE	Salmonella Enteritidis
SE	Standard error
SG	Salmonella Gallinarum
SI	Salmonella infantis
SK	Salmonella Kentucky
Spp.	species
SOR	sorbitol
SV	Salmonella Virchow
S.S agar	Salmonella shegilla agar
TDA	Tryptophan deaminase
Th.	thymus
URE	urease
VP	Voges-proskauer
Wk.	Week
Wt.	Weight
XLD	Xylose Lysine Desoxycholate Agar

LIST OF TABLES

No.	Title	Page
1	Oligonucleotide primers used in conventional and SYBR	51
	Green real time PCR	
2	Oligonucleotide primers used in multiplex PCR	52
3	Preparation of PCR Master Mix for cPCR	56
4	Cycling conditions of the <i>fli</i> C primers during cPCR	57
5	Cycling conditions of the <i>sefA</i> primers during cPCR	57
6	Cycling conditions of the STM4495 primers during cPCR	57
7	Cycling conditions of the <i>fli</i> B primers during cPCR	58
8	Cycling conditions of the <i>rfbS</i> primers during cPCR	58
9	Cycling condition of E. coli multiplex PCR assay 1	58
10	Cycling condition of E. coli multiplex PCR assay 2	59
11	Preparation of PCR Master Mix	59
12	Cycling conditions for SYBR green real time PCR of <i>S. enteritidis</i>	59
13	Cycling conditions for SYBR green real time PCR of <i>S. Kentucky</i>	60
14	Cycling conditions for SYBR green real time PCR of <i>S. Typhimurium</i>	60
15	Cycling conditions for SYBR green real time PCR of <i>S. infantis</i>	61
16	Cycling conditions for SYBR green real time PCR of <i>S. Gallinarum</i>	61
17	Evaluation of <i>E. coli</i> pathogenicity	66
18	Program of broiler vaccination	69
19	Flock history of monitored broiler flocks with high chick mortality (2012 till 2014)	75
20	Incidence and distribution of chick mortality in different Governorate	77
21	Incidence of bacterial isolation in broth media from different organs	83
22	The cultural and stain characters of isolated organisms	84
23	The biochemical characterization of isolated strains using the API 20E plate system	85

24	Incidence and distribution of isolated bacteria from different organs	86
25	Incidence and distribution of isolated <i>Salmonella</i> spp. from different organs	86
26	Incidence of the isolated organisms and their distribution in different farms	87
27	Incidence of single and mixed infections in monitored broiler flocks	88
28	Incidence of serologically typed and untyped E. coli	89
29	Incidence of serologically typed salmonella species	90
30	Accession numbers of different salmonella serovars in GenBank	96
31	Distribution of virulence genes in different diarregenic E. coli serogroups	109
32	Mean body Wt. in different Salmonella groups in comparing with control group during 4th week of experiment	122
33	Mortality rate during four week experimentation period in <i>Salmonella</i> spp. infected SPF chicks	123
34	Onset and severity of clinical signs and PM lesions in different salmonella inoculated groups	125
35	Re-isolation of different inoculated Salmonella serovars from different organs	126
36	Analysis of fecal shedding from cloacal swabs at 21 and 28 DPI	126
37	The histopathological lesions scoring in various organs of SPF chicks experimentally infected with different Salmonella speciesinfection during the whole experiment period	127
38	Mortality rate during four week experimentation period in E. coli infected SPF chicks	146
39	Mean body weight in different E. coli orally inoculated groups at four week interval	147
40	Re-isolation of different E. coli orally inoculated groups at four week interval	148
41	Clinico-pathological picture of different inoculated <i>E. coli</i> serogroups in SPF chicks.	149

42	The histopathological lesions scoring in various organs of different <i>E. coli</i> infected SPF chicks	150
43	Mean body weight of Salmonella infected chicks weekly during 5weeks experimentation period	173
44	Mean organ body Wt. ratio in Salmonella inoculated groups	175
45	Re-isolation of inoculated <i>Salmonella</i> serovars from different immune organs	180
46	Mean HI titer log2 against NDV in different Salmonella infected groups	181
47	Mean HI titer log2 against AIV in different Salmonella infected groups	184
48	Mean antibody titer against IBD in different <i>Salmonella</i> infected groups	187
49	Mean antibody titer against IBV in different <i>Salmonella</i> infected groups	190
50	Mean body weight of E.coli infected broiler chicks during 5 weeks experimentation period	216
51	Re-isolation of inoculated E. coli serogroups from immune organs	218
52	Mean immune organ body weight ratio in <i>E. coli</i> inoculated groups	219
53	Mean HI titer Log2 against NDV in different E. coli infected groups	224
54	Mean HI titer Log2 against AIV in different E. coli infected groups	227
55	Mean antibody titer against IBD in E. coli infected groups	230
56	Mean antibody titer against IBV in E. coli infected groups	233

LIST OF FIGURES

No.	Title	Page
1	Clinical signs and post mortem lesions of monitored chicks with high chick mortality problem.	78
2	Post mortem lesions of monitored chicks with high chick mortality problem.	
3	Morphological identification of bacteria through cultural, stain and motility characters	91
4	Biochemical identification of bacterial isolates using API20E.	92
5	Agarose gel photo documentation of cPCR on genetic material extracted from SE	97
6	Dissociation curve of SE using sybr green real time PCR	97
7	Agarose gel photo documentation of cPCR on genetic material extracted from SK	98
8	Dissociation curve of SK using sybr green real time PCR	98
9	Agarose gel photo documentation of cPCR on genetic material extracted from ST	99
10	Dissociation curve of ST using sybr green real time PCR	99
11	Agarose gel photo documentation of cPCR on genetic material extracted from SG (720bp)	100
12	Agarose gel photo documentation of cPCR on genetic material extracted from SG (187bp)	100
13	Dissociation curve of SG using sybr green real time PCR	101
14	Agarose gel photo documentation of cPCR on genetic material extracted from SI	102
15	Dissociation curve of SI using sybr green real time PCR	102
16	Neighbor joining tree of sefA gene of SE	103
17	Neighbor joining tree of fliC gene of SK	104

1		
18	Neighbor joining tree of STM4495 gene of ST	105
19	Neighbor joining tree of rfbS gene of SG	106
20	Neighbor joining tree of fljB gene of SI	107
21	Multiplex PCR assay showing distribution of virulence genes in different diarregenic <i>E. coli</i> serogroups	110
22	The mean body weight of different Salmonella infected groups during four experimentation period.	122
23	Mortality percent in Salmonella experimentally infected SPF chicks	124
24	Clinical signs and PM lesions in SE group	128
25	Clinical signs and PM lesions in ST group	129
26	Clinical signs and PM lesions in SG group	130
27	Clinical signs and PM lesions in SK and SI group	131
28	Clinical signs and PM lesions in SV group	132
29	Normal muscles and organs of sacrificed chick in control group	132
30	Histopathological changes occurred in liver of different salmonella infected groups.	133
31	Histopathological changes occurred in heart of different salmonella infected groups.	134
32	Histopathological changes occurred in bursa of different salmonella infected groups.	136
33	Histopathological changes occurred in thymus of different salmonella infected groups.	136
34	Histopathological changes occurred in spleen of different salmonella infected groups.	137
35	Histopathological changes occurred in kidney of different salmonella infected groups.	138

Continue

36	Histopathological changes occurred in intestine of different salmonella infected groups.	139
37	Mortality rate during four week experimentation period in <i>E. coli</i> infected SPF chicks	
38	Mean body weight in different <i>E. coli</i> orally inoculated groups at four week interval.	
39	Clinicopathological picture in <i>E. coli</i> O26 infected SPF chicks	151
40	Clinicopathological picture in <i>E. coli</i> O27 infected SPF chicks	152
41	Clinicopathological picture in <i>E. coli</i> O78 infected SPF chicks	153
42	Clinicopathological picture in <i>E. coli</i> O1 and O158 infected SPF chicks	154
43	Histopathological changes of different organs in <i>E. coli</i> O1 inoculated group	155
44	Histopathological changes of different organs in <i>E. coli</i> O1 inoculated group	156
45	Histopathological changes of (liver, heart and bursa) in <i>E. coli</i> O26 inoculated group	157
46	Histopathological changes of (thymus, spleen, kidney) in <i>E. coli</i> O26 inoculated group	158
47	Histopathological changes of (liver, heart, bursa, kidney) in <i>E. coli</i> O27 inoculated group	159
48	Histopathological changes of different organs in <i>E. coli</i> O78 inoculated group	160
49	Histopathological changes of (liver, heart, bursa, thymus) in <i>E. coli</i> O158 inoculated group	161
50	Histopathological changes of (Spleen, kidney and intestine) in <i>E. coli</i> O158 inoculated group,	162
51	Mean body weight in Salmonella inoculated group and un- inoculated control group in commercial broiler chicks	174
52	Mean spleen bwt. ratio in Salmonella inoculated groups	177
53	Mean bursa body weight ratio in salmonella inoculated groups	178

Continue

54	Mean thymus body weight ratio in salmonella inoculated group	179
55	Mean HI titer Log2 NDV in vaccinated Salmonella infected group	182
56	mean HI titer Log2 against NDV in non-vaccinated Salmonella infected group	183
57	Mean HI Ab. titer against AIV in vaccinated orally inoculated Salmonella group	185
58	Mean HI titer log2 AIV in non-vaccinated Salmonella infected group	186
59	Ab. titer against IBD in vaccinated Salmonella infected group	188
60	Ab. titer against IBD in non-vaccinated Salmonella infected group	189
61	Mean Ab. titer against IBV in vaccinated Salmonella infected group	191
62	Mean Ab. titer against IBV in non-vaccinated Salmonella infected group.	192
63	Gross lesions of immune organ in salmonella infected groups	193
64	Histopathological lesions of immune organs in SI infected group 7DPI	194
65	Histopathological lesions of immune organs in SK infected group 7 DPI	195
66	Histopathological lesions of immune organs in SV infected group7 DPI,	196
67	Histopathological lesions of immune organs in SI infected group 14 DPI	197
68	Histopathological lesions of immune organs in SI infected group 14 DPI	198
69	Histopathological lesions of immune organs in SK infected group 14 DPI	199
70	Histopathological lesions in SK infected group on 14 DPI	200

IX Continue

71	Histopathological changes in SV infected group 14 DPI	201
72	Histopathological changes in non-vaccinated SV infected group 14 DPI	202
73	Histopathological lesion in immune organ in Salmonella infected groups on 21 st DPI	203
74	Histopathological lesions in immune organ in Salmonella infected groups on 28 th DPI	204
75	Mean body weight in <i>E. coli</i> inoculated group and un-inoculated control group	217
76	Mean spleen body weight ratio in inoculated <i>E. coli</i> and uninoculated control group	221
77	Mean bursa body weight ratio in inoculated <i>E. coli</i> and uninoculated control group	222
78	Mean thymus body weight ratio in inoculated <i>E. coli</i> and uninoculated control group	223
79	Immune response to NDV vaccine in vaccinated <i>E. coli</i> infected group.	225
80	Immune response to NDV vaccine in non-vaccinated <i>E. coli</i> infected group	226
81	Immune response to AIV vaccine in Vaccinated E. coli infected group	228
82	Immune response to AIV non-vaccine in vaccinated <i>E. coli</i> infected group	229
83	Immune response to IBD vaccine in vaccinated <i>E. coli</i> inoculated and un-inoculated group	231
84	maternal immune response decline in non-vaccinated <i>E. coli</i> infection	232
85	Immune response to IBV vaccine in vaccinated <i>E. coli</i> infected groups.	234