Review in management of deep venous thrombosis of lower limb

Essay

Submitted by

Abdullah Mohammad Gamal Abdou M.B.B.Ch

For partial fulfillment of the Master Degree in General surgery

Supervised By

Prof. Dr. Abou Baker El Sedik Mustafa Hasan

Professor of vascular surgery
Ain Shams University - Faculty of Medicine

Prof. Dr. Mohammad Ayman Fakhry

Professor of vascular surgery Military Medical Academy

Dr. Ahmed Abou Elnaga Khallaf

Assistant professor of vascular surgery Ain Shams University - Faculty of Medicine

> Ain Shams University Faculty of Medicine

رؤية في علاج جلطات الأوردة العميقة للطرف السفلي

رسالة مقدمة من

الطبيب/ عبد الله محمد جمال عبده بكالوريوس الطب والجراحة كلية الطب- جامعة المنصورة

توطئة للحصول على درجة الماجستير في الجراحة العامة

تحت إشراف الأستاذ الدكتور/أبو بكر الصديق مصطفى حسن

أستاذ جراحة الأوعية الدموية كلية الطب- جامعة عين شمس

الأستاذ الدكتور/ محمد أيمن فخري

أستاذ جراحة الأوعية الدموية الأكاديمية الطبية العسكرية

الدكتور/ أحمد أبو النجا خلاف

أستاذ مساعد جراحة الأوعية الدموية كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس 2013

Table of Contents

Subject	Page
Table of Contents	I
List of figures	III
List of tables	VI
List of abbreviations	VII
Introduction	1
Aim of work	5
Chapter 1: Anatomy of venous system of LL	6
Chapter 2: Physiology of the venous system of	16
LL	
Chapter 3: Pathology of DVT	27
Chapter 4: Diagnosis and investigations of DVT	35
Chapter 5: Treatment of DVT	48
Pharmacological treatment	48
Surgical thrombectomy	61
Thrombolytic therapy	66
Chapter 6:Inferior Vena Caval filter	94
Chapter 7: post thrombotic syndrome	102
Chapter 7:DVT in special cases	
DVT and Malignancy	107

DVT and Pregnancy	114
DVT and Peadiatric	122
DVT and Old age	132
DVT and chronic kidney disease	138
DVT and chronic liver disease	144
summery	149
References	151
Arabic summary	

List of figures

	Description	Page
Figure 1	Perforating veins	12
Figure 2	Morphology of Parietal and ostial valves	15
Figure 3	Coagulation cascade	22
Figure 4	Fibrinolysis is controlled by plasminogen activator inhibitors (PAIs) and plasmin inhibitors	26
Figure 5	Subtotal occlusive thrombus in the popliteal vein is shown in this colour Doppler image	42
Figure 6	Algorithm for diagnosis of DVT	47
Figure 7	The effect of both streptokinase (SK) and tissue plasminogen activator (tPA) on lysis of the thrombus	66
Figure 8	Multiside hole catheter	83
Figure 9	Pharmacomechanical thrombolysis using Trellis system	85
Figure 10	Angiojet rheolytic phamacomechanical thrombolytic	85

	Description	Page
	system	
Figure 11	Ultrasound accelerated thrombolysis	86
Figure 12	venogram with occlusion of the left superficial and common femoral and iliac vein, after local lysis and after stent placement	89
Figure 13	Management of underlying stenosis of external iliac vein by stenting after thrombolysis	89
Figure 14	Multifunctional nanoparticles depicting various com ponents used in nano based diagnosis and therapy	91
Figure 15	multifunctional nanoparticle system with target specific, diagnostic, and therapeutic capabilities for DVT management	91
Figure 16	Designs of various inferior vena caval filters	100
Figure 17	Algorithm illustrates current treatment protocol for patients with iliofemoral deep venous thrombosis	101

List of tables

	Description	Page
Table 1	perforating veins -Above the Popliteal	11
	Space	
Table 2	perforating veins -Below the Popliteal	11
	Space	
Table 3	Modified Wells Score	40
Table 4	Hamilton's score	41
Table 5	Treatment regimens with commonly used	56
	LMWHs for deep vein thrombosis and for	
	pulmonary embolism	
Table 6	Recommended Duration of	60
	Anticoagulation Summary: DVT	
Table 7	Contraindications to thrombolysis	74-75
Table 8	Doses of various thrombolytic drugs	67
Table 9	Acquired,Inherited and congenital risk	104
	factors for pediatric VTE	
Table 10	Signs and symptoms of acute IDVT	105
Table 11	Recommended dosing of UFH and	123
	LMWH in neonates and children	
Table 12	Protocol for dosing paediatric patients	124
	with VKA	
Table 13	Risk factors of VTE in elderly compared	126
	to all patient	
	Villalta scale for assessment of PTS	127
Table 14	CEAP classification of PTS	133

List of Abbreviations

APSAC	Anisoylated purified streptokinase
	activator complex
BM	Balloon maceration
CaVenT	catheter directed venous thrombolysis
study	study
C-CDT	Catheter-directed intrathrombus
	thrombolysis in which thrombolytic agent
	was continuously infused
CDT	Catheter directed thrombolysi in which the
	thrombolytic agent administered as a bolus
	dose s
CEAP	Clinical, Etiological, Anatomical,
classification	Pathophysiological classification of
	chronic venous insufficiency
C-FDT	Fflow-directed thrombolysis in which
	urokinase was continuously infused
CHF	Congestive heart failure
CIV	Common iliac vein
CT scan	Computerized tomography scan
CTPA	Computed tomographic pulmonary
	angiography
CVI	Chronic venous insufficiency
DVT	Deep vein thrombosis
ECG	Electrocardiogram
EIV	External illac vein
EMS	placement of self-expandable metallic stent
FDP	Fibrin degradation products
FDT	Flow directed thrombolysis in which the
	thrombolytic agent administered as a bolus
	dose
FV	Femoral vein
ICH	Intracranial hemorrhage
IVC	Inferior vena cava

LMWH	Low molecular weight heparin
MI	Myocardial infarction
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
ng/L	Nano gram per liter
PAIMS	plasminongen activator Italian multicenter study
PE	Pulmonary embolism
PMT	Percutaneous mechanical thrombectomy
PT	pulse-spray pharmacomechanical thrombolysis
PTA	Percutanous transluminal angioplasty
PTS	Post thrombotic syndrome
PV	Popliteal vein
RR	Risk reduction
rt-PA	Recombinant Tissue plasminogen activator
RVD	Right ventricle dysfunction
SVC	Superior Vena Cava
TF	Tissue factor
TNKase	Tenecteplase
t-PA	Tissue plasminogen activator
UEDVT	Upper extremity deep vein thrombosis
VTE	Venous thromboembolism

Acknowledgment

First and foremost, I feel always indebted to *Allah*, the most gracious and the most merciful, who guided and aided me to bring this work to light.

I find no words by which I can express my sincere thanks and appreciation to *Prof. Dr. Abou Baker El Sedik Mustafa Hasan*, professor of vascular surgery, faculty of medicine, Ain Shams University for accepting me to conduct this work. It was an honor to work under his supervision.

I wish to express my deepest gratitude to *Prof. Dr. Mohammad Ayman Fakhry*, Professor of vascular surgery, Military Medical Academy, for giving me the privilege of working under his supervision, who made the guidelines for this essay and for his generous support.

I am grateful to *Dr.Ahmed Abou Elnaga Khallaf*,Assistant professor of vascular surgery , faculity of medicine – Ain Shams University for his guidance, discussion, generous support and careful supervision.

This dissertation is dedicated to

My parents.

My dear Wife.

DR/Amr Issa Hafez.

Thank you for your love, patience, encouragement, and for all the sacrifices you have made to give me a better life

Introduction

Venous thromboembolism (VTE), which encompasses both deep vein thrombosis (DVT) and pulmonary embolism (PE) is a significant health-care problem producing considerable morbidity, mortality and resource utilization (*Geerts*, 2008).

DVT most frequently affects the deep veins of the lower extremity. It usually begins in the calf veins. In patients found to have DVT on investigation, 33% have proximal (popliteal and above) vein involvement (*Anaya*,2005).

Known risk factors can be grouped under three headings first described by Virchow that predispose to venous thrombosis. Coagulopathy such as (malignancy, pregnancy, oral contraceptive, protein C, protein S deficiency and Anti thrombin III deficiency) and endothelial damage such as (trauma, pacing wires, surgery and central venous catheters) and venous stasis such as (induction of anesthesia, obesity, immobilization and history of varicose veins) (*Costa*, 2002).

Only 20-30% of patients with deep venous thrombosis manifested by symptoms and physical signs. Pain, swelling with pitting edema, calf tenderness. While 70% of patients

manifested only by one sign of classical signs or may be asymptomatic (*Deaden*, 2002).

Three categories for diagnosis of DVT. (A) clinical probability assessment based on patient history. (B) laboratory findings (D-dimer assays). (C) imaging studies most commonlyDuplex U/S and less frequently venography, CTV or MRV (*Saharan*, 2012).

VTE accounts for more deaths than the composite mortality of breast cancer, AIDS and road traffic accidents Up to 21% of DVT may lead to pulmonary embolism a potentially life threatening complication Further more DVT may cause severe morbidity in the short-term from phlegmasia caerulea dolens (PCD) and in the longer-term from chronic venous hypertension leading to the post-thrombotic syndrome (PTS) Up to 10% of patients with DVT develop venous ulceration (*Karthikesalingam*, 2011).

The main goals in treating DVT are to stop the thrombus from getting bigger, prevent the thrombus from breaking off and moving to lungs (pulmonary embolism), reduce the risk of recurrence of the DVT and prevent long term complications of DVT (chronic venous insufficiency or the postthrombotic syndrome [PTS]) (*Ping*, 2011).

The standard recommendation for treatment of patients with DVT is antithrombotic therapy, which begins with heparin and is followed by oral anticoagulation with warfarin.

Although this therapeutic anticoagulation method prevents thrombus extension, fatal pulmonary embolism, and recurrence of the DVT, it is not very helpful in minimizing the postthrombotic complications of acute DVT that result from persistent venous obstruction and destruction of vein valve function (*Fang*, 2011).

Non conventional thrombo ablative types of therapy in acute DVT include systemic thrombolytic therapy, catheter directed regional thrombolytic therapy (CDT) and percutaneous mechanical thrombectomy (PMT). PMT have been proposed as a new treatment for patient with DVT (*Janssen*, 2012).

CDT can be used as an adjunct to medical therapy but there is no consensus defining exact indications.

Combining CDT and PMT devices has been attempted to try to improve early mechanical thrombus removal and promote lysis of remaining clot.