

The Effect of Diode LASER Activated Tooth Bleaching versus Chemical Tooth Bleaching on surface morphology and chemical profile of Human Maxillary Central Incisor's enamel

(in vitro study)

Thesis Submitted to

Faculty of Dentistry, Ain Shams University

In partial fulfillment of the Requirement for

P.H.D. in Oral Biology

By

Enas Mostafa Abd El-Moez Radwan

Master degree,2013, Faculty of Dentistry, Ain-Shams University (B.D.S), 2000, Faculty of Dentistry, Ain-Shams University Dentist at El-Matria Teaching Hospital

Faculty of Dentistry

Ain-Shams University

2017

Supervisors

Prof. Dr. Reham Magdy M. Ameen

Professor of Oral Biology

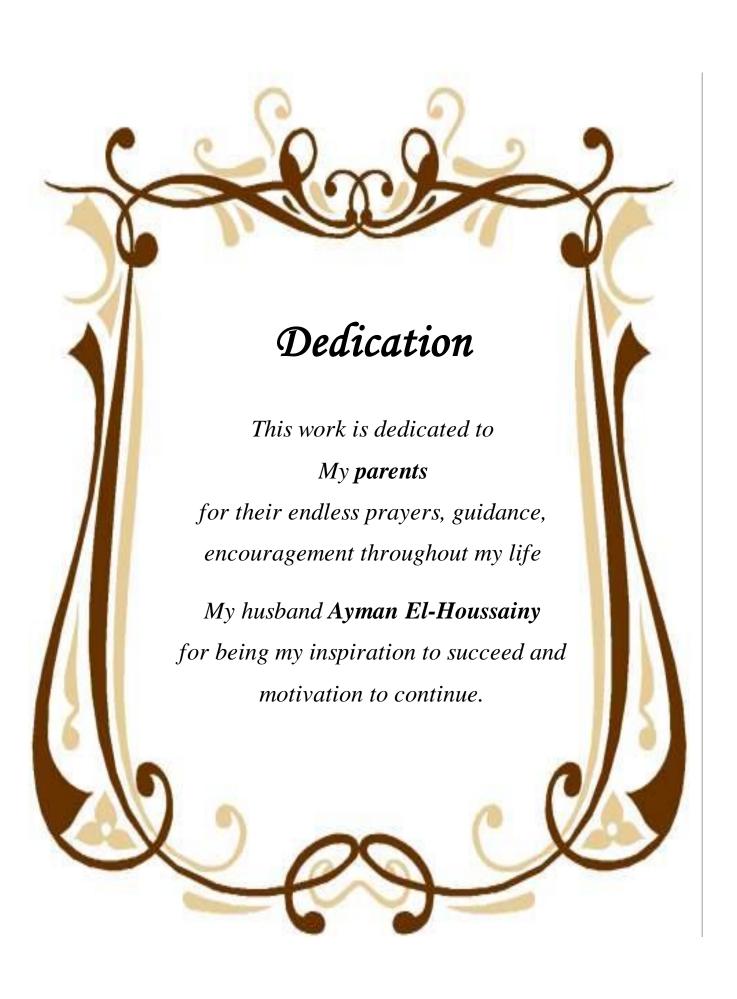
Faculty of Dentistry, Ain-Shams University

Ass. Prof. Dr. Dahlia Ghazy M. Rateb

Ass. Prof. of Oral Biology
Faculty of Dentistry, Ain-Shams University

((رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعَمْتَ عَلَيْ وَعَلَى وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وَأَدْ خِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)) وَأَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ))

صدق الله العظيم سورة النمل : 19


All praise to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Reham Magdy M. Ameen,** Professor of Oral Biology, Faculty of Dentistry, Ain-Shams University for her continuous encouragement, her kind support and appreciate suggestions that guided me to accomplish this work.

I am also grateful to Ass. Prof. Dr. Dahlia Ghazy M. Rateb, Ass. Prof. of Oral Biology, Faculty of Dentistry, Ain-Shams University who freely gave her time, effort and experience along with continuous guidance throughout this work.

Special thanks are extended to **Prof. Dr. Amina Hassan Ads**, Prof. of Oral Biology,

Faculty of Dentistry, Ain-Shams University for her continuous encouragement, her kind support and advice whenever needed.

Contents

Introduction	
Review of literature	
Teeth Discoloration	5
History of Bleaching	8
Chemical Bleaching mechanism	10
The effect of bleaching on Enamel Surface	13
LASER	16
Historical Review of LASER	17
LASER Components	20
LASER Physics	20
LASER interaction with biologic tissues	22
LASER effects	24
LASERs used in dentistry	27
Diode LASERs in dentistry	28
Role of LASER energy in bleaching	31
LASER effects on the bleaching efficiency	33
Diode LASER activated-bleaching and temperature elevation	36
The effect of Diode LASER activated-bleaching on enamel	
LASER Safety	
Aim of the study	42
Materials and methods	
Morphological Results	
Chemical Profile Results.	

Discussion	110
Conclusions	123
Recommendations	124
Summary	125
References	129
Arabic Summary	

List of tables

Table No.	Title	
1	Use of LASERs in Dentistry (George et al., 2009).	29
2	Summary of chemical bleaching surface groups' morphological results.	78
3	Summary of chemical bleaching subsurface groups' morphological results.	79
4	Summary of LASER activated bleaching surface groups' morphological results.	80
5	Summary of LASER activated bleaching subsurface groups' morphological results.	81
6	Descriptive statistics of Ca wt. % values.	83
7	The mean, standard deviation (SD) values and results of Wilcoxon signed-rank test for comparison between Ca wt. % at the control and experimental groups.	84
8	Descriptive statistics of P wt. % values.	86
9	The mean, standard deviation (SD) values and results of Wilcoxon signed-rank test for comparison between P wt. % at the control and experimental groups.	88
10	Descriptive statistics of C wt. % values.	89
11	The mean, standard deviation (SD) values and results of Wilcoxon	91

	experimental groups.	
12	Descriptive statistics of Ca:P ratio values.	92
13	The mean, standard deviation (SD) values and results of repeated measures ANOVA test for comparison between Ca:P ratio at the	
	control and experimental groups.	94
14	Summary of Chemical bleaching groups statistical analysis.	99
15	Summary of LASER activated-bleaching groups statistical analysis.	99

signed-rank test for comparison between C wt. % at the control and

List of Figures

Fig. No.	. No. Title	
1	Teeth mounted in Gypsum made base.	44
2	Application of chemical bleaching gel.	
3	Application of desensitizing gel.	47
4	Preparation of teeth for LASER activated bleaching gel.	51
5	Application of LASER activated bleaching gel.	51
6	Biolase TM 940 nm system.	51
7	Diode LASER application (30 s).	51
8	Desensitizing gel application.	
9	Chart of chemical bleaching groups.	
10	Chart of LASER activated-bleaching groups.	
11	A Scanning Electron micrograph for the CCS group (X~1000).	
12	A higher magnification of previous (Fig.11) inset (X 2500).	
13	A Scanning Electron micrograph for the CCS group (X~ 1000).	
14	A higher magnification of previous (Fig.13) inset (X5000)	60
15	A Scanning Electron micrograph for enamel of ECS group (X~1000).	62
16	A higher magnification of the previous (Fig.15) inset (X~5000).	62
17	A Scanning Electron micrograph for enamel of ECS group (X~1000).	63
18	A higher magnification of previous (Fig.17) inset (X5000).	63
19	A Scanning Electron micrograph for the CCT group (X 500).	65
20	A higher magnification of previous (Fig.19) inset (X1000).	65

21	A scanning electron micrograph for enamel of ECT group (X~1000).	67
22	A higher magnification of previous (Fig.21) inset (X~2000).	67
23	A Scanning Electron micrograph for the CLS group (X1000).	69
24	A higher magnification of previous (Fig.23) inset (X5000).	69
25	A Scanning Electron micrograph for enamel of ELS group (X1000).	71
26	A higher magnification of the previous (Fig.25) inset (X2000).	71
27	A scanning electron micrograph for the CLT group (X 500).	73
28	A higher magnification of previous (Fig.27) inset (X 2000).	73
29	A Scanning Electron micrograph for the CLT group (X 500).	74
30	A higher magnification of previous (Fig.29) inset (X 1000).	74
31	A Scanning Electron micrograph for enamel of ELT group (X 500).	76
32	A higher magnification of previous (Fig.31) inset (X2000).	76
33	A Scanning Electron micrograph for enamel of ELT group (X500).	77
34	A higher magnification of previous (Fig.33) inset (X1000).	77
35	EDXA chart obtained from the middle one third of the labial enamel.	82
36	Bar chart representing comparison between mean Ca wt. % values at the control and experimental groups	85
37	Bar chart representing comparison between mean P wt. % values at the	
	control and experimental groups	88
38	Bar chart representing comparison between mean C wt. % values at	
	the control and experimental groups	91
39	Bar chart representing comparison between mean Ca:P ratio values at	
	the control and experimental groups	95

98
02
03
05
06
08
09

List of Abbreviations

F.D.A	Food and Drug Administration
ROS	Reactive Oxygen Species
SEM-EDXA	Scanning Electron Microscope attached with Energy Dispersive X-ray Analyzer
НР	Hydrogen Peroxide
СР	Carbamide Peroxide
CO ₂	Carbon dioxide
Nd:YAG	Neodymium-doped: Yttrium Aluminium Garnet; Nd:Y ₃ Al ₅ O ₁₂
КТР	Potassium Titanyl Phosphate (KTiOPO ₄)
LED	Light Emitting Diodes
FT-RS	Fourier Transform - Raman Spectrometer
LASER	Light Amplification by Stimulated Emission of Radiation
MASER	Microwave Amplification by Stimulated Emission of Radiation
Er,Cr:YSGG	Erbium Chromium: Yttrium Scandium Gallium Garnet
рН	p ower of H ydrogen
nm	Nano-meter (wave length unit)

W	Watt (power unit)
s	seconds(time unit)
°C	Celsius degree (temperature unit)
CCS group	Control Chemical bleaching Surface Group
CLS group	Control LASER activated bleaching Surface Group
CCT group	Control Chemical bleaching Sub-surface Group
CLT group	Control LASER activated bleaching Sub-surface Group
ECS group	Experimental Chemical bleaching Surface Group
ELS group	Experimental LASER activated bleaching Surface Group
ECT group	Experimental Chemical bleaching Sub-surface Group
ELT group	Experimental LASER activated bleaching Sub-surface Group
SPSS	Statistical Package for Scientific Studies
ANOVA	Analysis of variance
P value	Probability value
Wt. %	W eight percent

Introduction

Today the appearance of teeth is an important part of the smile and the image projected in general, so many people have begun to consider the possibility of using dental bleaching. LASER dental bleaching might be one of the most popular options on the market lately, due to its quick results and effectiveness (**Jiménez** *et al.*, **2007**).

According to the Food and Drug Administration (F.D.A.), whitening restores natural tooth color whereas bleaching whitens the teeth beyond their natural color. In other words, whitening refers to the removal of stains on the surface of the tooth with the use of cleaning and polishing agents, whereas bleaching is concerned with doing away with colorants and discolorations in tooth substance by means of oxygen radicals. Unfortunately, the terms "whitening" and "bleaching" are often used interchangeably (Fornaini et al., 2013).

Dental bleaching is achieved by an oxidation-reduction reaction in which reactive oxygen species (ROS) and some free radicals released from the dissociation of the bleaching agent attack the dark-colored chromophore molecules present in the dental tissues and split them into smaller and less colored molecules, producing the bleaching effect. Hydrogen Peroxide, due to its reactive properties, is the main active chemical component of most agents used in tooth bleaching therapies (**Fornaini** *et al.*, **2013**).

Some dentists and patients prefer in-office power bleaching, in which a high concentration of hydrogen peroxide is administered to the teeth with an activating or promoting method (e.g. heat, light or LASER) to expedite the whitening effect. The treatment is in complete control of the operator, but it has certain disadvantages (Jaidev et al., 2011). The patient population, always enthralled by LASER, was very keen to try LASER bleaching, which was promoted as a procedure superior to earlier bleaching methods (Freedman et al., 2012).