BIOLOGICAL AND PHYTOCHEMICAL STUDIES ON SOME ISOLATED USEFUL ALGAE FROM SIWA OASIS

Submitted By

Youssra Essam Moustafa Abd El Rahman

B.Sc. of Science (Microbiology/Chemistry), Faculty of Science, Ain Shams University, 1999

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2018

APPROVAL SHEET

BIOLOGICAL AND PHYTOCHEMICAL STUDIES ON SOME ISOLATED USEFUL ALGAE FROM SIWA OASIS

Submitted By

Youssra Essam Moustafa Abd El Rahman

B.Sc. of Science (Microbiology/Chemistry), Faculty of Science, Ain Shams University, 1999 A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Science

Has been Approved

by:

Name

Signature

1-Prof. Dr. Wafaa Sobhy Abou El-Kheir

Prof. of Phycology, Botany Department

Faculty of Women

Ain Shams University

2-Prof. Dr. Mostafa Mohamed Ahmed El Miser

Prof. of Pharmacognosy

Pharmaceutical Science Division

National Research Center

3-Prof. Dr. Ahmed Darwish Al Gamal

Prof. of Phycology

Vice Dean of Faculty of Science for Post Graduate & Community Service Al-Azhar University

4-Dr. Hanona Samv Yaakoub

Assistant Prof. of Phytochemistry Medicinal and Aromatic Plants Department Desert Research Center

BIOLOGICAL AND PHYTOCHEMICAL STUDIES ON SOME ISOLATED USEFUL ALGAE FROM SIWA OASIS

Submitted By

Youssra Essam Moustafa Abd El Rahman

B.Sc. of Science (Microbiology/Chemistry), Faculty of Science, Ain Shams University, 1999

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science

Department of Environmental Basic Science

Under The Supervision of:

1-Prof. Dr. Wafaa Sobhy Abou El-Kheir

Prof. of Phycology, Botany Department Faculty of Women Ain Shams University

2-Dr. Afaf Hasan Ali

Lecturer of Phycology, Botany Department Faculty of Women Ain Shams University

3-Dr. Hanona Samy Yaakoub

Assistant Prof. of Phytochemistry Medicinal and Aromatic Plants Department Desert Research Center

ACKNOWLEDGMENTS

First and foremost, many thanks are due to Almighty **GOD**, the most precious and the most merciful, to Whom I owe mercy, support, guidance and directing me to the right way in my life.

It is really difficult for me to find suitable words that could express my deep gratitude and sincere appreciation towards **Prof. Dr. Wafaa Sobhy Abou El-kheir**, Professor of Phycology, Botany Department, Women's college, Ain Shams University for her perpetual guidance, creative thinking, valuable suggestions, fruitful discussion and profound revision of the results and discussion of the manuscript. Without her brilliant scientific ideas, tremendous concern and care, this thesis would not have been accomplished in this form.

It is my pleasure to express my sincere gratitude to Assist. **Prof. Dr. Hanona Samy Yaakoub**, Associate Professor of Phytochemistry, Medicinal and Aromatic Plants Department, Desert Research Center, for supervising this work and for her valuable help and encouragement.

I am sincerely indebted to **Dr. Afaf Hasan Ali**, Lecturer of Phycology, Botany Department, Women's college, Ain Shams University. I would like to express my deepest gratitude to her for giving every possible help and guidance.

I would like to express my deep appreciation and sincere gratitude to **Prof. Dr. Fatma Aly Ahmed Aly**, the chairman of Ecology and Dry lands Agric. Division, and **Prof. Dr. Enas Ibrahim Mohamed**, the head of Medicinal and Aromatic Plants Department, Desert Research Center for their spiritual helps and enthusiasm throughout this work.

I would like to express my sincere prayers to **Dr. Dina Mostafa Abd El Hamid Fahmy**, Lecturer of biochemistry, Natural products unit,
Medicinal and Aromatic Plants Department, Desert Research Center and **Dr. Shymaa Abd-Elqader Abd-Elwahed**, Lecturer of Phycology,
Botany Department, Faculty of Women's, Ain Shams University for
their continuous suggestions and guidance.

I want to express about my deep thanks to assistant **Prof. Dr**. **Ayman Ebrahim El-Sayed Badran**, Associate Professor of agronomy, Genetics Resources Department and **Miss Nehad F. Abd El Aziz**, Master student, Plant Protection Department, Desert Research Center for their valuable helps and providing all possible facilities in the central lab collection, Desert research center.

I feel also obliged and grateful to all my family for their kind patience and encouragement.

Frankly and deep thanks are due to my partner in life, my husband **Dr. Mohamed Abdel Aal Mohamed Darwish,** Fertilization Technology Department, National Research Center, Cairo, Egypt for his contineous support, fruitiful guidance and patience.

Last but not least deep thanks are to all staff members in the Desert research center for providing facilities and helps during this work.

ABSTRACT

In compliance to the recent surveys on algal species and their potentials to produce biologically active natural products, collection of the water samples were carried out during summer 2014 from five water sources in Siwa Oasis. Some physico-chemical and biological parameters for the water samples were recorded. Among these certain physico-chemical parameters were within the acceptable limit in the context of World Health Organization (WHO), while others exceeded. The phytoplankton community was represented by 54 species belonging to 35 genera and 4 algal groups: Bacillariophyta(20 species), Cyanophyta (19 species), Chlorophyta (13 species) and Euglenophyta (2 species). The results showed a correlation between some physico-chemical parameters and phytoplankton community. Bacillariophyta dominated in Ain Fetnas, while Cyanophyta in Ain Cleopatra. Fetnas Lake had the lowest number of total algal taxa mainly due to the exceeded levels of electrical conductivity, Na⁺, K⁺, Cl⁻, HCO₃⁻, Ca⁺⁺, Mg⁺⁺, total hardness and Boron. Three common microalgal isolates including one green alga (Chlorella vulgaris) and two blue green algae (Chroococcus turgidus and **Phormidium tenue**) were purified using BG-11, Basal Bold and Zarrouk media. Phytochemical analysis revealed the presence of important metabolites (carbohydrates, proteins, sterols, terpenoids, cardiac glycosides, phenolics, flavonoids and saponins) but alkaloids, tannins and anthraquinones were absent in all isolates. Determination of carbohydrates, proteins and vitamin E (α-tocopherol) concentrations were recorded. Chlorella vulgaris showed the highest concentration value of 31gm/100gm for carbohydrates and 145.7 ppm for αtocopherol, while *Phormidium tenue* showed the highest value of 28.4gm/100gm for proteins concentration. The methanolic extracts of the three algal taxa were tested for the antibacterial activity using agar well diffusion method against eight human pathogenic bacteria, two G+ve bacteria Staphylococcus aureus and Enterococcus sp. and six Gve bacteria Acinetobacter baumannii, Escherichia coli, Klebsiella

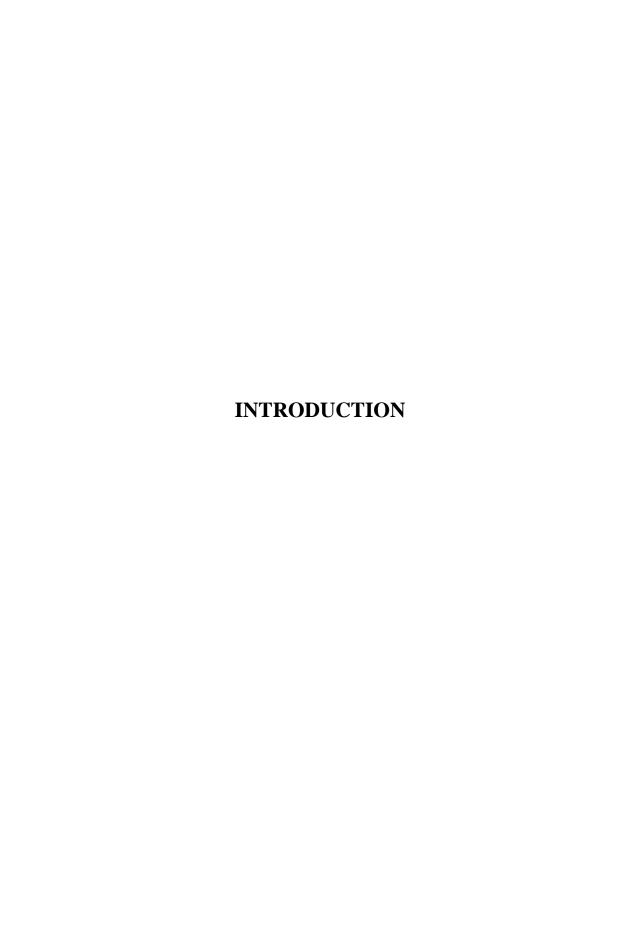
pneumonia, Proteus sp., Pseudomonas aeruginosa and Salmonella tyhphi. The results revealed that Phormidium tenue showed the highest promising antibacterial activity. The in vitro antioxidant potential of the three methanolic extracts were determined using the 1,1-dipheny-2picryl-hydrazyl radical (DPPH) scavenging assay. Phormidium tenue showed the highest percentage value of 60.9% with moderate activity. Phormidium tenue was choosed for successive extraction using petroleum ether, ethyl acetate, 80% methanol and water solvents to assay their antibacterial activity against the tested bacterial isolates. The ethyl acetate successive extract showed the highest antibacterial activity and was analyzed chromatographically. Results indicated that the phenolic compounds were the common bioactive compounds which were identified and quantified by using the high performance liquid chromatography (HPLC). The results showed the highest concentration for ethyl vanillate compound (1755.2 µgg⁻¹) follwed by chatechin (627.9 $\mu g g^{-1}$).

KEY WORDS: Siwa oasis, microalgae, water quality, Phytochemistry, Antibacterial activity and antioxidant activity.

Contents

Page	No.
Introduction	1
Review of Literature	6
Material and Methods	28
Results	51
Discussion	80
Plates	110
Summary	137
References	145
Arabic Abstract & Arabic summary	I

List of Figures


Figure No.	Figure title	Page No.
1	Serial dilution method for purification of the microalgal cultures	36
2	Total number of taxa for each algal group of the water sampling stations in Siwa Oasis	58
3	Distribution of the algal groups in the water sampling stations in Siwa Oasis.	58
4	Three pure isolates of the microalgae.	61
5	Propagation of the three microalgae through 4 stages using BG11 media	63
6	HPLC Chromatogram of α -tocopherol for <i>Chlorella vulgaris</i>	67
7	HPLC Chromatogram of α-tocopherol for <i>Chroococcus turgidus</i>	67
8	HPLC Chromatogram of α -tocopherol for Phormidium tenue	68
9	Petriplate showing the inhibition zone for the three methanolic algal extracts	72
10	The% of DPPH radical scavenging activity for the total methanolic extracts of the three isolated microalgae	73
11	Successive extracts of <i>Phormidium tenue</i>	79
12	Petriplate showing the inhibition zone of the successive extracts of <i>Phormidium tenue</i>	78

List of Tables

Table No.	Table title	Page No.
1	Physico-chemical parameters for the water sampling stations in Siwa Oasis	51
2	The heavy metals analysis for the water sampling stations in Siwa Oasis	53
3	Species composition of Bacillariophyta in the water sampling stations in Siwa Oasis	54
4	Species composition of Cyanophyta in the water sampling stations in Siwa Oasis	55
5	Species composition of Chlorophyta in the water sampling stations in Siwa Oasis	56
6	Species composition of Euglenophyta in the water sampling stations in Siwa Oasis	57
7	Groups composition of microalgae in the water sampling stations in Siwa Oasis	57
8	Pigments contents value (µg/ml) and dry weight (g/l) for the three microalgal isolates	63
9	The prelimanary phytochemical screening of <i>Chlorella vulgaris</i> , <i>Chroococcus turgidus</i> and <i>Phormidium tenue</i>	64
10	Total carbohydrates (gm/100gm), proteins (gm/100gm) and Vitamin E(α-tocopherol) (μgg-1) for the three microalgal isolates	65
11	The effect of the total methanolic extract of <i>Chlorella vulgaris</i> on the growth of 8 pathogenic isolated bacteria	68
12	The effect of the total methanolic extract of <i>Chrococcus turgidus</i> on the growth of the 8 pathogenic isolated bacteria	69
13	The effect of the total methanolic extract of <i>Phormidium tenue</i> on the growth of 8 pathogenic isolated bacteria	70
14	The percentage of DPPH radical scavenging activity for the total methanolic extract of the three isolated microalgae in compare with ascorbic acid (standard).	72
15	The effect of the petroleum ether successive extract of <i>Phormidium tenue</i> on the growth of 8 pathogenic isolated bacteria	74
16	The effect of the ethylacetate successive extract of <i>Phormidium tenue</i> on the growth of 8 pathogenic isolated bacteria	75
17	Phenolic composition of the ethyl acetate successive extract for <i>Phormidium tenue</i>	79

List of Plates

Plate NO.	Plate title	Page NO.
1	Location of the study area (Siwa Oasis) in Egypt's desert	30
2	Location of the water sampling stations in Siwa Oasis (Map)	31
3-6	Some species of Bacillariophyta	111-118
79	Some species of Cyanophyta	120-125
10-11	Some species of Chlorophyta	127-130
12	Some species of Euglenophyta	132-133
13	The three isolated pure microalgae	135-136

INTRODUCTION

This research work was achieved on some local aquatic fresh water microalgae isolated from Siwa Oasis. Simply, Siwa Oasis is one of the aforementioned places that didn't undergo before for any comprehensive bioactivity, while Shaaban (1985) studied the algal assemblages and species composition of Siwa Oasis and their relatively comparable habitats only. Extensive worldwide search is presently undergoing to find novel therapeutically cheaper alternatives for natural products which can be used in the preparation of drugs (Mayer et al., 2005 and Cardozo et al., 2007). Since 1970s the interest in medicinal plants increased tremendously due to the failure of modern medicine to provide effective treatment for chronic diseases. Since the mid-1980s, a great number of screening programs have been intiated worldwide by pharmaceutical industries, universities and national research institutions with the aim of searching for new bioactive natural medicinal products. Sources of them have expanded to include higher and lower plants and marine organisms, as well as animals that are promising enough to be developed into new drugs (Wanger, 2005). Following the glow of the new vision and the greater interest to the pivotal role played by algae and their healing potency.

Literatures specifically which devoted to algal assemblages and species composition of the Egyptian oases and their relatively comparable habitats were very limited e.g: (Shaaban and El Habibi, 1978; Gharib, 2004; Fawzy et al., 2013 and Hifney et al., 2013 (in El-Kharga Oasis); Shaaban, 1985 (in Siwa Oasis); Ibraheem and Al-Sherif, 2009 (in El-Bahariya Oasis); Shaaban and Hamed, 1997 (in El-Arish Valley and its vicinity North Sinai); Hamed, 2005 and 2008

interested in diatoms and cyanobacteria from some hot springs and other different habitats and **Piatek** *et al.*, **2009** investigated chrysophytestomatocysts (at Ain Sukhna)).

Microphytes or microalgae are microscopic algae, typically found in freshwater and marine systems. Microalgae have been used for therapeutic applications for several years and represent aunique opportunity to discover novel metabolites. The rate of finding metabolites already obtained from other biological sources is less in microalgae as compared with other microorganisms (Olaizola, 2003). Many microalgal extracts were found to have antialgal (Hellio et al., 2002), antifouling (Bhadury and Wright, 2004), anti-allergic (Na et al., 2005), anti-inflammatory (Abedin and Taha, 2008), anticoagulant (Dayong et al., 2008), anticancer (Kim et al., 2011), antioxidant activities (Devi et al., 2011), antibacterial or antifungal (Jaritz et al., **2011**) and antiviral (**Kim** *et al.*, **2012**). It is worthwhile screening the bioactivity of the microalgal crude extracts for the antibacterial activity against some infectious human pathogenic bacteria. Bacterial infection causes high rate of mortality in human population and aquaculture organisms. For example, Salmonella sp. causes diarrhea and typhoid fever (Leven, 1987 and Jawetz et al., 1995). Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa cause diseases like mastitis, abortion, respiratory complications including some life threatening illness (Boyd, 1995). According to recent reports of the World Health Organization (WHO) it is mandatory to develop safe, nontoxic and efficient anti-bacterial agents of valuable practice in pharmacology and to diminish side effects of antibiotics as the latter could raise toxicities and serious threatened conditions in some cases. On the other hand, preventing disease outbreaks or treating the diseases

with drugs or chemicals alone may not be sufficient to tackles these problems as the microorganisms develop resistance against the applied chemical drugs (Walsh, 2003). The first investigation on antibiotic activity of algae was carried out by Pratt et al.(1944). Many studies have been established to prove the antimicrobial effect of metabolites extracted from algal species especially those derived from blue green algae (Zulpa et al., 2003; Abedin and Taha, 2008). Many investigators have reported antibacterial activities of microalgae as due to fatty acids (Cooper et al., 1983; Findlay and Patil, 1984). Antibacterial activity of volatile extracts of Spirulina platensis have been studied by Ozdemir et al. (2004). El-Sheekh et al. (2006) showed that phenolic compound from Nostoc muscorum exhibited antagonistic activity against Gram +ve and Gram-ve bacteria.

A lot of scientific research is focused on exploring safe and effective antioxidant compounds. Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen formed mitochondria as a natural byproduct of energy production during the oxidative phosphorylation process. Ordinarily, the levels of free radicals in living organisms are controlled by a complex set of antioxidant defenses, which minimize oxidative damage to important biomolecules. Oxidative stress conditions are caused by endogenous oversized formation of ROS that exceeds the availability of antioxidants and also by impact of external stressors. Excessive ROS can induce apoptosis and cause damage, especially to cellular proteins, polyunsaturated fatty acids and DNA. Further, oxidative stress may be associated with nearly 200 diseases, such as cardiovascular diseases, cancer, atherosclerosis, hypertension, ischemia, diabetes mellitus, hyperoxaluria, neurodegenerative diseases (Alzheimer's and Parkinson's), rheumatoid