

Ain Shams University Faculty of Engineering Electronics and Communications Department

Sigma Delta Analog to Digital Converters For Wireless Receivers

A Thesis

Submitted in partial fulfillment for the requirements of Master of Science degree in Electrical Engineering

Submitted by:

Botros George Iskandar Shenouda

B.Sc. of Electrical Engineering (Electronics and Communications Department)
Ain Shams University, 2001.

Supervised by:

Prof. Dr. Hisham Sayed Haddara Dr. Mohamed Amin Dessouky

Cairo 2008

Acknowledgements

I would like to thank God Almighty for bestowing upon me the chance, strength and ability to complete this work.

I wish to express my gratitude to my supervisors, Dr. Mohamed Dessouky and Professor. Hisham Haddara for their encouragement, flexibility, invaluable thoughts and useful discussions. Special thanks for Dr. Mohamed Dessouky for his enlightening set of courses at MEMScAP, Egypt covering different aspects of analog integrated circuit design, custom analog layout, switched capacitor circuits and $\Sigma\Delta$ ADCs. They were paradigm-shifting for my career. Thanks also for Dr. Hisham for facilitating the use of the state of the art design tools and the associated deep sub-micron process design kit, in addition to a world class training in the field of data converters design at Si-Ware Systems.

Thanks for each and every one in my family at Si-Ware Systems. Specially for those with whom I have worked very closely namely, Dr. Ayman El-Sayed, Ayman Ahmed, Ahmed Helmy. They have set excellent examples of which I have learned a lot in all aspects. Thanks to my colleagues Ahmed El-Shennawy, Ahmed Ashry, Mohamed Saeed, Mohamed El-Badry and Ahmed Safwat for all the useful discussions and their help with revising the thesis. Thanks also for Dr. Amr Hafez for his flexibility and understanding during the thesis writing phase.

I would like also to thank all my previous work colleagues. Specially Medhat Karam, Hany El-Hak, Tarek El-Esseily and Ahmad Noaman for all what they taught me, both technically and personally. I really owe them a lot.

Finally I am in no way capable of appropriately thanking my parents and my sister for their unconditional love and unlimited support.

Botros George Iskandar Shenouda Electronics and Communications Department Faculty of Engineering Ain Shams University Cairo, Egypt 2008

Abstract

Botros George Iskandar Shenouda, "Sigma Delta Analog to Digital Converters For Wireless Receivers", Master of Science dissertation, Ain Shams University, 2008.

This thesis presents low-voltage, low-power system and circuit design techniques of high linearity discrete time sigma delta modulators. The target application is analog to digital conversion in wireless receivers with wide channel bandwidths implemented in DSM (deep sub-micron) CMOS technologies.

On the system level, a sigma delta modulator with relaxed analog requirements is proposed. It is based on multibit quantization and a hybrid of feedforward and feedback loop filter architectures with input signal feed-in at critical nodes. This architecture facilitated the use of low gain, power efficient telescopic OTAs (operational transconductance amplifiers) in the loop filter at a low supply voltage of 1.2V.

On the circuit level, a low voltage, low power implementation of the high linearity input feedforward modulator architecture is proposed with a new clocking scheme that reduces the timing complexity in the feedback path. The implementation avoids both the power hungry, nonlinear active solutions and the severe signal attenuation of passive ones.

The research also shows that *digitally assisted analog processing* is an attractive low power alternative in DSM technologies, where DEM (dynamic element matching) was used to relax the matching requirements of the feedback DAC capacitors. A power efficient implementation of the DWA (data weighted averaging) algorithm is presented and designed.

The effect of process variations on the performance of SC (switched capacitor) circuits was investigated. It is shown that significant power savings can be achieved by controlling the dynamics of the amplifiers at the core of any SC circuit over process. Toward that end, a biasing scheme is proposed that achieves constant slew rate and constant gain bandwidth product across process corners.

A top down design methodology was followed to implement the proposed switched capacitor sigma delta modulator in a $0.13\mu m$ CMOS process. The modulator achieves an ENOB of 14-bit with more than 110dB SFDR over the WCDMA channel bandwidth of 1.92~MHz at an oversampling ratio of 20X, while consuming a worst case current of

3.85mA from a 1.2V supply for both the analog and the digital parts. This resulted in a FOM (figure of merit) of 73fJ/Conversion, outperforming the state of the art continuous time and discrete time sigma delta modulators.

Key words: Sigma Delta modulator, Input signal feedforward, Process variations, Reduced analog requirements, Digitally assisted analog processing, constant slew rate and constant gain bandwidth product biasing.

Contents

Li	ist of tables				
Li	ist of figures				
Li	st of	Symb	ols	XX	
1	Intr	\mathbf{coduct}	ion	1	
	1.1	Motiv	ation	2	
	1.2	Thesis	S Outline	3	
2	Sign	na Del	lta ADCs: an Overview	5	
	2.1	Analo	g-to-Digital Conversion: Fundamentals	5	
		2.1.1	Sampling	7	
		2.1.2	Quantization	7	
	2.2	Oversa	ampling $\Sigma\Delta$ ADCs: Fundamentals	11	
		2.2.1	Oversampling	11	
		2.2.2	Noise Shaping	13	
		2.2.3	Basic Architecture of Oversampling $\Sigma\Delta$ ADCs	15	
		2.2.4	Performance Metrics	18	
		2.2.5	Ideal Performance	21	
	2.3	Single	Loop $\Sigma\Delta$ Architectures	22	
		2.3.1	Loop Filter Architectures	22	
		2.3.2	NTF Zeros Optimization	24	
		2.3.3	Stability of Higher Order $\Sigma\Delta$ Modulators	25	

	2.4	Cascaded $\Sigma\Delta$ Architectures		29
	2.5	Multibit $\Sigma\Delta$ Architectures		31
	2.6	Performance Comparison of Trad	itional $\Sigma\Delta$ Topologies	33
	2.7			33
	2.8	Continuous time versus Discrete	time Implementations	38
	2.9	$\Sigma\Delta$ ADCs Survey		41
3	Ana	alog to Digital Conversion in V	Vireless Receivers	46
	3.1	Monolithic Receiver Architecture	5	46
		3.1.1 Single-Path mixing		47
		3.1.2 Image-Reject Mixing and	Direct-Conversion receivers	48
		3.1.3 The Low IF Reciever Arch	nitecture	51
		3.1.3.1 Image-Reject Re	ceivers with IQ Mismatch	51
		3.1.4 The Wideband IF Recieve	r Architecture	54
	3.2	Analog Vs. Digital Channel Selec	t Filtering	55
		3.2.1 Analog Channel Selection		56
		3.2.2 Digital Channel Selection		58
		3.2.3 Mixed-Signal Channel Sel	ection	58
		3.2.4 System Level Trade-offs		59
		3.2.4.1 The Need for Au	tomatic Gain Control	60
	3.3	Case Study: A UMTS WCDMA	Receiver	62
		3.3.1 UMTS Receiver Specificat	ions	62
		3.3.1.1 UMTS General l	nformation	62
		3.3.1.2 Processing Gain	and Minimum Required SNR	62
		3.3.1.3 Peak to Average	Power Ratio	63
		3.3.1.4 Reference Sensit	vity and Maximum Input Level	63
		3.3.1.5 Blocking Charac	teristics	64
		3.3.2 UMTS Receiver Topology	and ADC Specifications	65
4	Sign	gma Delta Modulator System I	Design	68
	4.1	Modulator Target Specifications		68
	42	Power Efficient Noise Budget All	ocation	69

	4.3	Input Signal Feed-Forward	70
	4.4	Feedforward versus Feedback Modulators	73
		4.4.1 Unity-Gain STF in a Single-Feedback Modulator	73
		4.4.2 Unity-Gain STF in a Distributed-Feedback Modulator	74
	4.5	Modulator Architecture Choice	75
	4.6	Modulator Design Using Schreier Toolbox	75
		4.6.1 Modualtor NTF Design	78
	4.7	A Relaxed Analog Requirements Modulator Architecture	82
		4.7.1 Output States of Different Integrators	82
		4.7.2 PSD of Different Integrators' Output	84
5	Sign	na Delta Modulator Top Down Design 8	88
	5.1	Modulator Switched Capacitor Realization	88
		5.1.1 Switched Capacitor Integrators and Feedback DACs	90
		5.1.2 NTF Zero Realization	92
	5.2	Input Signal Feedforward Proposed Implementation	93
	5.3	A Reduced Complexity Timing Scheme for Input Feedforward Modulators	96
	5.4	Noise Analysis of the Switched Capacitor Modulator	98
		5.4.1 Noise Analysis Methodology	98
		5.4.2 Noise Sources Identification	99
		5.4.2.1 Noise Effects in SC Circuits	99
		5.4.3 Noise Power Transfer Functions $\dots \dots \dots$	101
		5.4.3.1 Sampling Capacitors Scaling	103
		5.4.4 Noise Analysis Results $\dots \dots \dots$	104
	5.5	Effect of Sampling Clock Jitter	104
	5.6	Modeling and Analysis of Building Blocks Non-idealities	105
		5.6.1 Amplifier Related Non-Idealities	107
		5.6.1.1 Settling Dynamics Analysis	107
		5.6.1.2 Settling Dynamics Modeling	13
		5.6.1.3 Amplifier Finite and Non-linear DC gain	14
		5.6.2 Switches Finite and Non-linear Resistances	14
		5.6.2.1 Effect of R_{ON} in the Sampling Phase	115

			5.6.2.2 Effect of R_{ON} in the Integration Phase
			5.6.2.3 Effect of R_{ON} on the Slew Rate
		5.6.3	Capacitors Mismatch Analysis
			5.6.3.1 Coefficients Mismatch
			5.6.3.2 Feedback DAC Unit Elements Mismatch
			5.6.3.3 Dynamic Element Matching
		5.6.4	Flash ADC Comparators Offsets
	5.7	Top D	own Design Results
		5.7.1	Effect of Amplifier DC Gain
		5.7.2	Effect of Amplifier Dynamics
6	Circ	cuit In	aplementation and Bottom up Verification 131
	6.1	Proces	ss and Temperature Sensitivity of SC Circuits
		6.1.1	Traditional Biasing Techniques of SC Circuits
		6.1.2	Constant Slew Rate/Constant Gain Bandwidth Product Biasing 133
			6.1.2.1 Weak Inversion for High Speed, Low Power Operation 133
			6.1.2.2 The Proposed SC Current Reference
			6.1.2.3 Design Considerations
			6.1.2.4 Simulation Results
	6.2	Switch	ned Capacitor Integrators
		6.2.1	Switches Realization
			6.2.1.1 Modulator Switches Classification
			6.2.1.2 Switches Bootstrapping and Clock Boosting Circuits 145
			6.2.1.2.1 Basic Principle
			6.2.1.2.2 Circuit Implementation
			6.2.1.2.3 Simulation Results
		6.2.2	Fully Differential Amplifiers and CMFB Circuits
			6.2.2.1 OTAs Architecture Choice
			6.2.2.2 OTAs Schematic Design
			6.2.2.2.1 Constant- V_{DS} Wide Swing Cascode Biasig 156
			6.2.2.2. Simulation Results
			6.2.2.3 The Common Mode Feedback Circuit 159

		6.2.2.3.1 Trade-offs of the conventional SC CMFB Circuit	160
		6.2.2.3.2 An Improved SC CMFB Circuit	161
		6.2.2.3.3 Simulation Results	162
		6.2.3 Noise Analysis Verification	164
	6.3	Summing Flash ADC	166
		6.3.1 The Summing Comparator	167
		6.3.1.1 Summing SC Front End Design	167
		6.3.1.2 Preamplifier Design	168
		6.3.1.2.1 Simulation Results	169
		6.3.1.3 Latch Design	170
		6.3.1.3.1 Simulation Results	170
		6.3.1.4 Preamplifier Offset Cancellation	171
		6.3.2 Reference Ladder	172
		6.3.3 Summing Flash ADC Simulation Results	173
	6.4	Thermometer-to-Binary Encoder	175
	6.5	Data Weighted Averaging Algorithm Implementation	177
	6.6	Clock Generator	180
	6.7	$\Sigma\Delta$ Modulator Design Verification	182
		6.7.1 Performance Summary	184
7	Cor	nclusion and Future Work	187
	7.1	Conclusion	187
	7.2	Future Work	188
Re	efere	nces	190

List of Tables

2.1	Optimized NTF Zeros Positions for an N^{th} Order Modulator	26
2.2	Literature survey of Recently Published $\Sigma\Delta$ Modulators (I)	43
2.3	Literature survey of Recently Published $\Sigma\Delta$ Modulators (II)	44
2.4	Literature survey of Recently Published $\Sigma\Delta$ Modulators (III)	45
4.1	Summary of Modulator Coefficients	81
5.1	Noise Calculations Summary at the Worst Case Temperature 70^oC	105
6.1	Corners Simulation Results of the Conventional Biasing Technique	141
6.2	Corners Simulation Results of the Proposed Biasing Technique	142
6.3	Different OTAs Specifications	155
6.4	$\Sigma\Delta$ Modulator Performance Summary	185
6.5	The Designed $\Sigma\Delta$ Modulator Vs. the Published State of the Art	186

List of Figures

2.1	The Basic Analog to Digital Conversion Process	6
2.2	Ideal Quantization Process	8
2.3	Quantization Error PSD	9
2.4	Anti-aliasing filtering	12
2.5	PSD of the Quantization Error of an Oversampled Converter	13
2.6	Block Diagram of an Oversampling $\Sigma\Delta$ ADC	15
2.7	The Signal Processing in a $\Sigma\Delta$ ADC	17
2.8	The Basic $\Sigma\Delta$ Modulator Architecure and its Linear Model	17
2.9	Definitions of the Performance Metrics used to Characterize a $\Sigma\Delta$ ADC	20
2.10	General Structure of a Single quantizer $\Sigma\Delta$ Modulator	23
2.11	The CIFB Structure	24
2.12	The CIFF Structure	25
2.13	NTF Zeros realization in the CIFB Structure	26
2.14	NTF Zeros realization in the CIFF Structure	27
2.15	Root Locus of 2^{nd} and 3^{rd} Order $\Sigma\Delta$ Modulators	28
2.16	Generic N-stage Cascade $\Sigma\Delta$ Modulator	29
2.17	MASH 2-0 Diagram	30
2.18	Peak SNR vs. oversampling ratio for different modulators topologies	34
2.19	Pole-Zero Constellation of a Real Bandpass NTF	35
2.20	Pole-Zero Constellation of a Complex Bandpass NTF	36
2.21	The NTF & STF of a 4^{th} Order Real Bandpass Modulator	37
2.22	The NTF & STF of a 4^{th} Order Complex Bandpass Modulator	37
2.23	$\Sigma\Delta$ Modulator with (a) Discrete-Time and (b) Continuous-Time loop filter	39

2.24	(a) Switched-Capacitor and (b) Switched-Current Feedback DAC output .	40
3.1	Single Path Mixing IF Receiver	47
3.2	Single Path Mixing	48
3.3	The Conventional Superheterodyne Receiver	48
3.4	The Direct Conversion Receiver	49
3.5	Two Path ZIF Spectrum	50
3.6	A Low-IF arhitecure employing a quadrature bandpass $\Sigma\Delta$ modulator	52
3.7	Two Path LIF Spectrum	52
3.8	Two Path LIF Spectrum with IQ Mismatch	53
3.9	Wideband IF Double-Conversion Receiver	54
3.10	The Baseband Channel Select Filtering Problem	55
3.11	Baseband processing with analog channel select filtering	57
3.12	Baseband channel selection with an analog switched-capacitor filter	57
3.13	Baseband channel selection with a sigma-delta modulator and digital filter	58
3.14	Baseband processing with mixed-signal channel select filtering	59
3.15	Template of interference and blocking signal levels for WCDMA	65
3.16	Calculation of ADC Dynamic Range	66
4.1	Linear Model of the Input Feedforward Modulator	71
4.2	The Full Feedforward Modulator Architecture	74
4.3	Different Modulator Architectures	76
4.4	Peak SNR vs. oversampling ratio for different modulators topologies	77
4.5	The Designed NTF and STF of the $\Sigma\Delta$ Modulator	79
4.6	The Proposed $\Sigma\Delta$ Modulator Architecture	80
4.7	Ideal Modulator Output Power Spectral Density	81
4.8	Integrators' Output States without Input Feedforward	83
4.9	Integrators' Output States with Input Feedforward	83
4.10	PSD of the 1^{st} Integrator Output without Input Feedforward	85
4.11	PSD of the 1^{st} Integrator Output with Input Feedforward	85
4.12	PSD of the 2^{nd} Integrator Output without Input Feedforward	86
4.13	PSD of the 2^{nd} Integrator Output with Input Feedforward	86

4.14	PSD of the 3^{rd} Integrator Output without Input Feedforward	87
4.15	PSD of the 3^{rd} Integrator Output with Input Feedforward	87
5.1	Sigma Delta Modulator Switched Capacitor Realization	89
5.2	Implementation of the SC Feedback DAC	91
5.3	NTF Zero Implementation Using T-Network	92
5.4	Lumped SC Passive Summer	94
5.5	Proposed SC Preamplifier and Latch combination for Distributed Summing	95
5.6	SC Modulator Timing Diagram	98
5.7	Equivalent Noise Sources for a Typical SC Integrator	101
5.8	Equivalent Noise Sources in the Proposed SC Modulator	102
5.9	Noise Power Transfer Functions	103
5.10	Modulator Noise Budget vs. Sampling Clock Period Jitter	106
5.11	Overall Output SNDR vs. Sampling Clock Period Jitter	106
5.12	SC Stage Model for Settling Analysis	108
5.13	Equivalent feedback model of an SC stage during its charge-transfer phase	108
5.14	Settling behavior of an SC stage in its charge-transfer phase for a step input	110
5.15	Minimum Required Current for 15-bit Settling Accuracy	112
5.16	Amplifier Nonlinear DC Gain Model	115
5.17	SC integrator with R_{ON} included in both Clock Phases	115
5.18	Multi-Bit vs. Single Bit DAC Linearity	119
5.19	Monte Carlo Simulation without DWA	120
5.20	DWA Sample Response for Elements Selection	122
5.21	DWA Implementation	123
5.22	Sample of Element Selection Vectors from the DWA Model	124
	Monte Carlo Simulation with DWA	125
5.24	Output SNDR vs. Amplifiers' DC gain of the 1^{st} and 2^{nd} Integrators	127
5.25	Output SNDR vs. Amplifier's DC gain of the 3^{rd} Integrator	127
5.26	Effect of Input Feedforward Paths on the DC Requirements	128
5.27	Output SNDR vs. Amplifier's tail current of the 1^{st} integrator	129
5.28	Output SNDR vs. Amplifier's tail current of the 2^{nd} integrator	129
5.29	Output SNDR vs. Amplifier's tail current of the 3^{rd} integrator	130

6.1	Inversion Coefficient (dashed) and the Ratio $\frac{Cp_{si}}{Cp_{wi}}$ (solid) vs. $(gm/I_D)_{wi}$	136
6.2	The SC Current Reference of [Khan 03]	137
6.3	The SC Current Reference of [Malik 01]	137
6.4	The Proposed SC Current Reference	138
6.5	Transient response of the proposed current reference	140
6.6	Transconductance (dashed) and tail current (solid) vs. capacitance C1	140
6.7	Transconductance (dashed) and tail current (solid) vs. frequency	141
6.8	A Switch Controlled with Input Tracking Gate Voltage	145
6.9	SC Implementation of the Offset Voltage Source	146
6.10	Basic Switch Bootstrapping Circuit	147
6.11	Switch Gate Voltage Bootstraping Circuit Schematic	148
6.12	Clock Boosting Circuit Schematic	149
6.13	Response of the Loaded Clock Boosting Circuit	150
6.14	Response of the Loaded Bootstrapping Circuit	150
6.15	On-Resistance of a Thick Oxide NMOS Switch	151
6.16	On-Resistance of a Thin Oxide NMOS Switch	152
6.17	The Telescopic OTA	153
6.18	Schematic of The 1^{st} integrator's OTA	154
6.19	Conventional Wide Swing Cascode Biasing	156
6.20	Constant V_{DS} Wide Swing Cascode Biasing	156
6.21	The Open Loop Response of the 1^{st} OTA	157
6.22	DC Gain of the 1^{st} OTA versus the Output Voltage for Different Corners .	158
6.23	DC Gain of the 3^{rd} OTA versus the Output Voltage for Different Corners .	159
6.24	The Conventional SC CMFB Circuit	160
6.25	An Improved SC-CMFB Circuit	161
6.26	Schematic of The Double Sampled CMFB	162
6.27	Loop Gain of the CMFB Amplifier	163
6.28	Transient Response of the CMFB Circuits	164
6.29	Input Referred Noise of the First Integrator Simulated with [Kundert 03] .	165
6.30	Proposed SC Preamplifier and Latch combination for Distributed Summing	166
6.31	The Preamplifier Schematic	167