

Cairo University
Faculty of Veterinary Medicine
Department of Virology

PhD Thesis

Molecular Analysis and Antigenic Mapping of Hemagglutinin of Selected Egyptian H9N2 Avian Influenza Virus

Presented by

Amany Adel Ibrahiem Hussein

B.Sc. of Veterinary Medicine – Cairo University (2006) M.V.Sc. of Virology – Cairo University (2012)

Under supervision:

Prof. Dr. Ahmed A. El Sanousi

Prof. of Virology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Hussein Ali Hussein

Prof. of Virology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Abd El Satar Arafa

Chief Researcher
Reference Laboratory for Quality
Control on Poultry Production
Animal Health Research Institute
Dokki - Giza

(2017)

Cairo University

Faculty of Veterinary medicine

Department of Virology

Supervision sheet

Supervisors

Prof. Dr. Ahmed A. El Sanousi

Professor of Virology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Hussein Ali Hussein

Professor of Virology, Faculty of Veterinary Medicine Cairo University

Prof. Dr. Abdel-Satar Arafa

Chief Researcher
Reference Laboratory for Quality Control on Poultry Production
Animal Health Research Institute
Dokki-Giza

Cairo University Faculty of Veterinary Medicine Department of Virology

Name	Amany Adel Ibrahiem Hussein
Date of birth	18/7/1984
Place of birth	Giza
Nationality	Egyptian
Degree	Philosophy of Doctor in Veterinary Medical Science
Specification	Virology
Title	Molecular analysis and antigenic mapping of Hemagglutinin of selected Egyptian H9N2 avian influenza virus
Supervisors:	1-Prof. Dr. Ahmed A El-Sanousi. Professor of Virology, Faculty of Veterinary Medicine, Cairo University 2- Prof. Dr. Hussein Ali Hussein Professor of Virology, Faculty of Veterinary Medicine, Cairo University 3- Prof. Dr. Abdel-Satar Arafa Mohamed. Chief researcher, Reference laboratory of quality control on poultry production, Animal Health Research Institute

Abstract

Avian influenza viruses of H9N2 subtype became widely distributed in most Middle Eastern countries, causing great economic losses in poultry industry especially when complicated with other pathogens. The H9N2 viruses in Egypt have a wide spread nature since its first occurrence in 2011. In this study, we collected Cloacal and tracheal samples from 19 flocks for detection, isolation and propagation of H9N2 virus using real-time RT-PCR and egg inoculation. We studied the molecular evolution of the hemagglutinin gene of H9N2 viruses by full HA gene sequencing, then the antigenic characterization was implemented using the cross HI assay and SVN assay. The antigenic relationships between the different viruses were clarified by the statistical analysis for results of the cross HI and SVN. 3D Bioinformatics cartography mapping software was used in analysis of HI results. The phylogenetic analysis of the HA gene of Egyptian H9N2 viruses clearly points out the presence of only one group (Egy/G1) of originally introduced viruses in 2011 related to the G1 lineage within group B, with the presence of multiple minor clusters includes viruses from 2011 to 2015. However, a new variant (Egy/G1var) cluster was detected in quails since 2012. Genetically, Egy/G1var viruses characterized by 20 amino acid substitutions within and adjacent to the antigenic sites in comparison to other Egyptian viruses. In addition, two glycosylation sites at amino acid residues 127 and 189 were determined in close to the receptor binding and antigenic sites. The antigenic analysis based on 3D antigenic mapping showed that the Egy/G1var cluster was clearly distinct from the original Egy/G1 viruses. One hundred serum samples of 5 vaccinated layers flocks were tested for sero conversion against different Egyptian viruses, and the results of seroconverion were analyzed statistically and found out a low response against the genetic and antigenic variant virus of quail origin. In conclusion, Egy/G1var is shown to be a new escape mutant variant cluster with an adaptive evolution in quails.

Keywords: LPAI H9N2, HA gene, Genetic characterization, Antigenic cartography, Glycosylation site, Antigenic sites, Receptor binding sites, Quails & Egypt

<u>Dedication</u>

For my family

My father, my mother

My sisters and my brother

For my dear friends

<u>Acknowledgment</u>

First of all, endless thanks and appreciation for **almighty Allah** for help and guidance in my whole life and my work

I would like to admit with great thanks to prof. Dr. Ahmed Abd El-Ghani ElSanousi,
Professor of Virology, Faculty of Veterinary Medicine, Cairo University, for his
guidance and support in my work and I am so appreciated for his encouraging me to do
my best to get a valuable scientific product

I will never forget the efforts of **prof. Dr. Hussein Ali Hussein**, Professor of Virology, Faculty of Veterinary Medicine, Cairo University, I would like to thank him for his decisive and effective guidance during the work and the writing to get a high standard scientific work, and I am so appreciated for his effort in the revision of the work, in spite of his illness, wishing for him a speedy recovery

Special and distinguishable thanks for **Dr. Abdelsatar Arafa**, a chief researcher, Reference laboratory of quality control on poultry production, Animal Health Research Institute, for his extraordinary technical and scientific supervision, also I would like to thank him for encouraging me to get a professional scientific work

Great thanks should be admitted to **Prof. Dr. Mohamed Khalifa Hassan**, the head of Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute for providing the materials and equipment which were used in our work

Special great thanks for **Dr. Abdullah A. Selim**, Senior researcher, Reference
Laboratory for Veterinary Quality Control on Poultry Production, Animal Health
Research Institute, for his kindly technical and scientific help and for providing me the
needed reagents

My deep appreciation and thanks for **Prof. Dr. Soad Nasif**, chief researcher and the exhead of Reference Laboratory for Veterinary Quality Control on Poultry Production,

Animal Health Research Institute for her kind help and support

Special appreciation and grateful feelings to **Prof. Dr. Mona M. Ali**, the vice minister of agriculture and land reclamation ministry for the veterinary affairs, for her great efforts in building up and constructing the Reference Laboratory for Veterinary Quality Control on Poultry Production, in where we could start and finish our work with high quality standard reagents and in where I got a chance to learn and work a lot.

A lot of thanks for my colleges in the Reference Laboratory for Veterinary Quality Control on Poultry Production especially the stuff member of gene analysis unit

Special great thanks for my dear friends for their spiritual support

List of contents

I. List of Tables	I
II. List of figures	II
III. List of charts	III
1. Introduction	1
2 Daviery of literatures	
2. Review of literature:	5
2.1. Historical overview.	5
2.1.1. History of H9N2 virus world wide	5
2.1.2. History of H9N2 LPAI in Egypt	8
2.2 Review on the H9N2 low pathogenic avian influenza virus:	10
2.2.1 Classification and nomenclature	10
2.2.2 Morphology and structure of the virus	10
2.2.3 Genomic organization and viral proteins	12
2.3 Host range and interspecies transmission of H9N2 AIVs	20
2.4 Evolution of H9N2 avian influenza virus	22
2.5 Diagnosis of LPAI H9N2 virus:	23
2.5.1 Clinical signs and PM lesions:	
	23
2.5.2 Laboratory diagnosis:	25
2.5.2.1 Virus isolation and propagation:	25
2.5.2.2 Serological diagnosis	26
2.5.2.3 Molecular diagnosis of avian influenza virus	31
2.6 Overview on the Hemagglutinin protein of infleuza virus	38
2.6.1 Structure of HA protein	38
2.6.2 Mechanism of hemagglutinin maturation:	40
2.6.3 Function of hemagglutinin related to its structure	42

3. Materials and Methods	49
* Plan of work	49
3.1 Materials	50
3.1.1 Sampling	50
3.1.2 Materials used for avian influenza virus isolation	52
3.1.3 Material required for plate Hemagglutination (HA) test	52
3.1.4. Materials for molecular characterization of the HA gene:	53
3.1.4.1 Materials for total RNA extraction	53
3.1.4.2 Materials for testing the RNA by Real-Time RT-PCR	53
3.1.4.3 Materials for Reverse Transcriptase-Polymerase Chain	54
Reaction (one step RT-PCR).	
3.1.4.4 Materials for PCR product Purification	56
3.1.4.5 Materials for sequence reactions	56
3.1.4.6 Materials for sequence analysis	57
3.1.5 Materials for antigenic characterization of H9N2 viruses	57
3.1.5.1 Materials for polyclonal antisera preparation	57
3.1.5.2 Materials for cross Hemagglution inhibition assay (HI)	57
3.1.5.3 Materials for analysis of the cross HI assay's results	58
3.1.5.4 Materials for serum/ virus titration assay (SVN)	58
3.1.5.5 Materials for analysis of the SVN assay's results	59
3.1.6 Materials for antibody response of vaccinated layers flocks:	59
3.1.6.1 Materials for Hemagglution inhibition assay (HI)	59
3.1.6.2 Materials for analysis of the results antibody response	59
3.2. Methods:	60
3.2.1 Isolation of avian influenza virus	60
3.2.2 Methods of Hemagglutination test	61
3.2.3 Method for molecular characterization of the HA gene:	61
3.2.3.1 Method of viral RNA extraction	61
3.2.3.2 Method of Real-Time RT-PCR	62
3.2.3.3 Method of Reverse Transcriptase-Polymerase Chain Reaction	62
3.2.3.4 Method for purification o PCR product from agarose gel	65
3.2.3.5 Method of preparation of sequencing reaction	66
3.2.3.6 Method of purification of the sequence reactions	66

3.2.3.7 Method for designation of the sequenced viruses	68
3.2.3.8 Methods of molecular analysis of HA gene sequence	69
3.2.4 Methods for antigenic characterization of H9N2 viruses:	70
3.2.4.1 Method for preparation of polyclonal antisera	70
3.2.4.2 Method of Hemagglutination inhibition test (HI)	71
3.2.4.3 Methods of analysis of the cross HI assay's results	72
3.2.4.4 Method of serum virus neutralization test (SVN)	75
3.2.4.5 Statistical analysis for neutralization assay (SVN)	77
3.2.4.6 Statistical correlation between the results of SVN and HI	78
3.2.5 Method for determination of antibody response of	78
vaccinated layers flocks	
3.2.5.1 Method for hemagglutinition inhibition (HI) assay	78
3.2.5.2 Method of statistical analysis of seroconverted titers	78
4. Results	79
4.1 Isolation and propagation of viruses	79
4.2 Molecular characterization of HA gene:	79
4.2.1 Real time PCR amplification	79
4.2.2 Results of Conventional PCR for HA amplification	79
4.2.3 Nucleotide sequence alignment of HA gene	83
4.2.4 Amino acid sequence alignment of HA gene	91
4.2.5 The identity % among the different isolates	95
4.2.6 The phylogenetic analysis	97
4.2.7 Analysis of the amino acid mutations	101
4.2.7.1 Positive selection analysis for HA codon	
4.2.7.2 The analysis of proteolytic cleavage site (PCS)	
4.2.7.3 The analysis in RBS	
4.2.7.4 The analysis of antigenic epitopes4.2.7.5 The analysis of the glycosylation sites	
4.3 Antigenic analysis and cartography construction	108
4.3.1 Results of cross hemagglutinin inhibition assay	108
4.3.1.1 The statistical analysis for HI assay results	
4.3.1.2 The antigenic cartography mapping	
4.3.1.3 The antigenic relatedness among the H9 viruses	
4.3.2 Results of serum/virus neutralization test	118
4.3.3 The correlation between the results of HI and SVN assays	120
4.4 Results of antibody response of vaccinated flocks	122

5. Discussion	127
6. English summary	141
7. References	143
IV- List of Abbreviation	IV
Appendix	VII
Arabic summary	i

I. List of Tables

Ser. No.	Title	Page no.
Table 1	Influenza A virus genome RNA segments and coding assignments	12
Table 2	The epidemiological date of the Egyptian viruses in the study	51
Table 3	The data of the sera from H9N2 vaccinated commercial layers flocks	52
Table 4	Primers and probes used for Real tine RT-PCR identification of viruses in samples of the study	54
Table 5	Primers used in Reverse Transcriptase-Polymerase Chain Reaction (one step RT-PCR) and Sequance reaction of HA gene	55
Table 6	The different H9N2 antigens and antisera used in the antigenic cartography	58
Table 7	The designation and the accession no. of HA sequence of 19 Egyptian viruses	68
Table 8	Results of HA activity and real time PCR amplification of HA gene of H9, H5,H7 and for NDV and IBV	80
Table 9	Nucleotides and amino acid Identity % between the Egyptian isolates of our study and the different world isolates	96
Table 10	Estimates of Average Evolutionary Divergence over all Sequence Pairs	97
Table 11	Amino acid mutations in the Proteolytic cleavage sites (PCS) of H9N2 viruses isolated in Egypt between 2011 and 2015 in comparison to A-Quail-HongKong-G1-97	103
Table 12	Amino acids alterations in the RBS and different areas on the HA of H9N2 viruses isolated in Egypt between 2011 and 2015 in comparison to A-Quail-HongKong-G1-97 with H9 numbering for mature protein (H3 numbering in parentheses)	104
Table 13	Amino acid mutations in antigenic epitopes on HA of Egyptian H9N2 viruses in comparison to A-Quail-HongKong-G1-97	105
Table 14	The glycosylation sites of HA in comparison to A-Quail-HongKong-G1-97 the ancestor of the Egyptian H9N2 viruses with H9 numbering for mature protein	107
Table 15	The results of cross HI assay for Egyptian avian H9N2 viruses and their antisera against some world viruses of H9 viruses	109
Table 16	The Correlation matrix between the Egyptian viruses of our study according to the results of HI test	114
Table 17	Antigenic and genetic relatedness between different Egyptian and world isolates used in our study	117
Table 18	Neutralization titers of Egyptian antigens against 4 prepared Egyptian antisera	119
Table 19	The correlation values of both HI and SVN assays in between the individuals of each antiserum	120
Table 20	HI test results (log2) for 100 samples of sera represent 5 different vaccinated layers commercial flocks	123

I