

PREDICTION OF RATE OF PENETRATION IN ROTARY STEERABLE SYSTEM DRILLING USING STATISTICAL APPROACH

By

Eng. / Mohamed Mohamed Refat Ali Rageh

B.Sc. in Petroleum Engineering Faculty of Engineering Al Azhar University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Petroleum Engineering

PREDICTION OF RATE OF PENETRATION IN ROTARY STEERABLE SYSTEM DRILLING USING STATISTICAL APPROACH

By

Eng. / Mohamed Mohamed Refat Ali Rageh
B.Sc. in Petroleum Engineering
Faculty of Engineering
Al Azhar University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Abdel Sattar A. Dahab Associate Prof.Dr. Abdulaziz M. Abdulaziz
Professor of Petroleum Engineering Associate Professor of Petroleum Engineering Mining & Petroleum Engineering Mining & Petroleum Engineering Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University
Dr. Mohamed M. Al Assal
Chairman of Triple-L oil Service Company

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT 2017

Cairo-Egypt

PREDICTION OF RATE OF PENETRATION IN ROTARY STEERABLE SYSTEM DRILLING USING STATISTICAL APPROACH

By

Eng. / Mohamed Mohamed Refat Ali Rageh
B.Sc. in Petroleum Engineering
Faculty of Engineering
Al Azhar University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Petroleum Engineering

Approved by
Examining Committee
Prof. Dr. Abdel Sattar A. Dahab, Thesis Main Advisor
Ass.Prof. Dr. Abdulaziz M. Abdulaziz, Member
D M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dr. Mohamed M. El Assal, Member
Prof. Dr. Abdel Alim Hashim Elsayed, Internal Examiner
Eng. Osama Al Bakly, External Examiner
- Chairman of Agiba Petroleum Company

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT 2017

Acknowledgment

In the name of Allah, the most beneficent, the most merciful.

I would like to express my great appreciation and deep gratitude to Prof. Dr. Abdel Sattar Abdel Hamid Dahab, for the infinite assistance, endless support, sincere advises and honest guidance he gave for the achievement of this work in spite of his numerous duties.

I am grateful to Dr. Abdulaziz Mohamed Abdulaziz and Dr. Mohamed Mahmoud ElAssal for their main role in the accomplishment of the work.

I am also grateful to all the supplier of the data for giving me all the required data to complete this research.

Also gratitude and thanks are due to members of examining committee, Prof. Dr. Abdel Alim Hashim Elsayed and Eng. Osama AlBakly for their sincere vision and helpful remarks about this thesis without forgetting the entire staff of Petroleum Engineering at Cairo University.

I also would like to extend my sincere thanks and respect to all the professors in Petroleum Engineering Department at Al-Azhar University who taught me in all sincerity and love to get my Bachelor of Engineering.

Also I would like to extend my sincere thanks and respect to the professors in Petroleum Engineering Department at Cairo University who kept on giving me everything new in the world of oil and helped me to get the master's degree.

Finally, I would like to express my thanks and appreciation to my family especially my wife for the great help and support.

Dedication

To

My Mother and My Wife

Table of Contents

Acknowledgment	I
Dedication	II
Table of Contents	III
List of Tables	
List of Figures	
Nomenclatures	
Abstract	
Chapter 1: Introduction	1
Chantan 2. I Hanatana Samuar	2
Chapter 2: Literature Survey	
2-1 History of directional drilling	
2-2 Rotary Steerable System (RSS)	
2-4 ROP Prediction	
Chapter 3: Statement of the problem	
3-1 Statement of the problem.	
3-2 Study Objective	8
Chapter 4: Research Methodology	9
4-1- Buckingham π theorem	
4-1-1- First trial	11
4-1-2- Second trial	16
4-1-3- Third trial	17
4-1-4- Fourth trial	18
Chapter 5: Results & Discussion	20
5-1- First method.	
5.1.1 ROP vs. Flow Rate	
5.1.2 ROP vs. Pressure	
5 1 3 ROP vs. WOB	21
5.1.4 ROP vs. RPM	
5.1.5 ROP vs. Mud Weight	
5-2- Second method	
5-2-1- Limestone	
5-2-2- Sandstone	
5-2-3- Shale	
5-2-4- Siltstone.	
5-3- Third method: (Buckingham π Method)	
5-3-1 First trial	
5-3-2 Second trial	
5-3-3 Third trial	
5-3-4 Fourth trial	

Chapter 6: Model Verification	32
6-1- Egypt Area	
6-2- Kuwait Area	
6-3- Saudi Arabia Area	35
Chapter 7: Conclusions and Recommendations	36
7-1- Conclusions	
7-2- Recommendations	36
References	37
Appendix	41
Appendix A: Wells Information	42
A-1: wells information used in model development	42
A-2: wells information used in model Verifications	
A-2-1 Egypt Area	44
A-2-2 Kuwait Area	45
A-2-3 Saudi Arabia Area	45
Appendix B: Buckingham Theorem	46
B-1 Buckingham π theorem	
B-1-1 Historical information	46
B-1-2 Statement	46
B-1-3 Formal Proof	47
B-2- Third trial driven the equations	47
Appendix C: Mud Logs	49
Appendix D:Tables	64
Appendix E: Solving the equations	109

List of Tables

Table 4-1 Limestone four π groups model summary resulted by SPSS	13
Table 4-2 Limestone four π groups coefficients resulted by SPSS	13
Table 4 -3 Sandstone four π groups model summary resulted by SPSS	14
Table 4-4 Sandstone four π groups coefficients resulted by SPSS	14
Table 4-5 Shale four π groups model summary resulted by SPSS	15
Table 4-6 Shale four π groups coefficients resulted by SPSS	15
Table 4-7 Siltstone four π groups model summary resulted by SPSS	15
Table 4-8 Siltstone four π groups coefficients resulted by SPSS	16
Table 4-9 Four π groups model summary resulted by SPSS for general case	16
Table 4-10 Four π groups coefficients resulted by SPSS for general case	17
Table 4-11 Three π groups model summary and linear coefficients together with the fitting equations	18
Table 4-12 Three π groups model summary resulted by SPSS for general case	18
Table 4-13 Three π groups coefficients resulted by SPSS for general case	19
Table 5-1 R ² values for regression methods for ROP vs. Flow Rate	20
Table 5-2 R ² values for regression methods for ROP vs. Pressure	20
Table 5-3 R ² values for regression methods for ROP vs. WOB	21
Table 5-4 R ² values for regression methods for ROP vs. RPM	21
Table 5-5 R ² values for regression methods for ROP vs. Mud Weight	22
Table 5-6 Ten wells data model summary resulted by SPSS	22
Table 5-7 Ten wells limestone data model summary resulted by SPSS	23
Table 5-8 Ten wells sandstone data model summary resulted by SPSS	23
Table 5-9 Ten wells shale data model summary resulted by SPSS	23
Table 5-10 Ten wells siltstone data model summary resulted by SPSS	23
Table D-1 well parameters obtained from mud log for well WONX-1X presented in Fig C-1	64

Table D-2 well parameters obtained from mud log for well WONC-201 presented in Fig C-2	66
Table D-3 well parameters obtained from mud log for well WKAL-C6-ST1 presented in Fig C-5	66
Table D-4 well parameters obtained from mud log for well WONC-302 presented in Fig C-3	68
Table D-5 well parameters obtained from mud log for well WONC-308 presented in Fig C-4	70
Table D-6 well parameters obtained from mud log for well Shadow-4H-ST1 presented in Fig C-6	72
Table D-7 well parameters obtained from mud log for well AG-121X presented in Fig C-7	74
Table D-8 well parameters obtained from mud log for well AG-82ST1 presented in Fig C-10	74
Table D-9 well parameters obtained from mud log for well BERENICE-1X presented in Fig C-8	76
Table D-10 well parameters obtained from mud log for well HAWK-1X presented in Fig C-9	78
Table D-11 drilling parameters obtained from the ten application wells based on Limestone formation	80
Table D-12 (continued) drilling parameters obtained from the ten application wells based on Sandstone formation	82
Table D-13 drilling parameters obtained from the ten application wells based on Shale formation	84
Table D-14 drilling parameters obtained from the ten application wells based on Siltstone formation	86
Table D-15 the calculated four π groups obtained from the ten application wells based on Limestone formation	88
Table D-16 the calculated four π groups obtained from the ten application wells based on Sandstone formation	89
Table D-17 the calculated four π groups obtained from the ten application wells based on Shale formation	90

Table D-18 the calculated four π groups obtained from the ten application wells based on Siltstone formation	91
Table D-19 the calculated four π groups obtained from the ten application wells without based on formation type	92
Table D-20 the calculated four π groups obtained from the ten application wells based on Limestone formation	96
Table D-21 the calculated four π groups obtained from the ten application wells based on Sandstone formation	97
Table D-22 the calculated four π groups obtained from the ten application wells based on Shale formation	98
Table D-23 the calculated four π groups obtained from the ten application wells based on Siltstone formation	99
Table D-24 the calculated three π groups obtained from the ten application wells without based on formation type	100
Table D-25 well parameters obtained from mud log for well BAHGA-C101-1 presented in Fig C-11	104
Table D-26 well parameters obtained from mud log for well BED3-C6-1 presented in Fig C-12	105
Table D-27 well parameters obtained from mud log for well MN-0194 presented in Fig C-13	106
Table D-28 well parameters obtained from mud log for well BI-0007 presented in Fig C-14	107
Table D-29 well parameters obtained from mud log for well K-282 presented in Fig C-15	108

List of Figures

Fig. 2.1Whipstock	3
Fig. 2.2 Jet Deflection	3
Fig. 2.3 Rebel tool	4
Fig. 2.4 Downhole Motor	4
Fig 2.5 Autotrak from Baker Inteq is an example of a rotary steerable system	5
Fig. 3-1 Average annual cost presented as a ratio to standard motor cost	8
Fig. 4.1 Methodology Flow Chart	10
Fig. 5.1 R ² for calculated ROP and recorded ROP for first trial for Limestone formation	24
Fig. 5.2 R ² for calculated ROP and recorded ROP for first trial for Sandstone formation	25
Fig. 5.3 R ² for calculated ROP and recorded ROP for first trial for Shale formation	26
Fig. 5.4 R ² for calculated ROP and recorded ROP for first trial for Siltstone formation	26
Fig. 5.5 R ² for calculated ROP and recorded ROP for second trial for All formations	27
Fig. 5.6 R ² for calculated ROP and recorded ROP for third trial for Limestone formation	28
Fig. 5.7 R ² for calculated ROP and recorded ROP for third trial for Sandstone formation	29
Fig. 5.8 R ² for calculated ROP and recorded ROP for third trial for Shale formation	30
Fig. 5.9 R ² for calculated ROP and recorded ROP for third trial for Siltstone formation	30
Fig. 5.10 R ² for calculated ROP and recorded ROP for fourth trial for All formation	31
Fig. 6.1 R ² for calculated ROP and recorded ROP for well BAHGA-C101-1	32
Fig. 6.2 R ² for calculated ROP and recorded ROP for well BED3-C6-1	33
Fig. 6.3 R ² for calculated ROP and recorded ROP for well MN-0194	34

Fig. 6.4 R ² for calculated ROP and recorded ROP for well BI-0007	34
Fig. 6.5 R ² for calculated ROP and recorded ROP for well K-282	35
Fig C-1 Well parameters presented in mud log for well WONX-1X	49
Fig C-2 Well parameters presented in mud log for well WON C-201	50
Fig C-3 Well parameters presented in mud log for well WON C-302	51
Fig C-4 Well parameters presented in mud log for well WON C-308	52
Fig C-5 Well parameters presented in mud log for well WKAL-C6-ST1	53
Fig C-6 Well parameters presented in mud log for well Shadow-4H-ST1	54
Fig C-7 Well parameters presented in mud log for well AG-121X	55
Fig C-8 Well parameters presented in mud log for well BERENICE-1X	56
Fig C-9 Well parameters presented in mud log for well HAWK-1X	57
Fig C-10 Well parameters presented in mud log for well AG-82ST1	58
Fig C-11 Well parameters presented in mud log for well BAHGA-C101-1	59
Fig C-12 Well parameters presented in mud log for well BED3-C6-1	60
Fig C-13 Well parameters presented in mud log for well K-282	61
Fig C-14 Well parameters presented in mud log for well MN-0194	62
Fig C-15 Well parameters presented in mud log for well BI-0007	63
Fig E-1 an example for using Goal Seek function on the excel program	109
Fig E-2 an example for the result obtained by using Goal Seek function on the excel program	110
Fig E-3 an example for the result obtained by using WolframAlpha website	111
Fig E-4 another example for the result obtained by using WolframAlpha website	112

Nomenclatures

AG: Abu-Gharadiq filed

API: American Petroleum Institute

A/R: Abu Rawash AZI: Azimuth

BHA: Bottom Hole Assembly

BI: Bihaith field deg: Degree

DLS: Dog Leg Severity

ECD: Equivalent Circulating Density

f: Function **ft:** Feet

gpm: Gallons per Minute

H: Hole Size

HIS: Horsepower per Square Inches

HP: Horsepower

hr: Hours

ID: Inside Diameter

in: Inches
INC: Inclination
lbf: Pounds Forces
lbm: Pounds Masses
KCL: Potassium Chloride
KJO: Kuwait Joint Operation
KOC: Kuwait Oil Company

L: Length

LWD: Logging While Drilling

M: Mass

MD: Measured DepthMN: Minagish filed

MTR: Motor

MW: Mud Weight

MWD: Measurement While Drilling

OBM: Oil Base Mud **OD:** Outside Diameter

P: Pressure

PDC: Polycrystalline Diamond Compact **PDM:** Positive Displacement Motor

POOH: Pull Out of Hole PPG: Pound per Gallon Parts per Million

PSI: Pounds per Square Inch

Q: Flow Rate
Qn: Flow Rate/Inch
ROP: Rate of penetration
RPM: Revolution per Minute
RSS: Rotary Steerable System

S: 1/Speed

SPP: Stand Pipe Pressure

SPSS: Statistical Package for the Social Sciences

T: Time

TC: Tungsten Carbide

TD: Total DepthTOC: Top of CementTVD: True Vertical Depth

U: Upper

WBM: Water Base MudWD: Western DesertWOB: Weight on Bit

 π : Pie groups used in Buckingham method

ρ: Mud density

Abstract

Directional and horizontal drilling have now become an essential element in oilfield development, both in onshore and offshore operations. There are several types of deflection tools; the most common of which are downhole motors (PDM) and rotary steerable system (RSS). A rotary steerable system (RSS) employs specialized downhole equipment to replace mud motors. A rotary steerable system (RSS) is able to make continuous changes in inclination and azimuth without interrupting drilling operations. It produces a cleaner and smoother wellbore while reducing drag, improving the transfer of weight on bit and increasing the rate of penetration. The RSS system offers the potential to drill safe and faster sections due to the fact that no time is wasted in orienting the toolface prior to drilling especially in extended reach drilling where tool orientation is particularly difficult.

There are many challenges to drill a directional well compared to a vertical well, such as limitation in weight on bit, hole cleaning, trajectory control, etc., this lead to difficult selection to the proper parameters to increase the rate of penetration.

Prediction of ROP is necessary for planning and cost estimation. ROP depends mainly on operational variables and formation types.

In the present study, the effective parameters on directional drilling of ten wells, drilled between 2007 and 2015 in Egypt are used to predict the rate of penetration using RSS drilling. This is accomplished using various statistical approaches including R-Squared method, SPSS statistical software, and Buckingham π theorem. Additional five directional wells from the Middle East area, drilled between 2011 and 2016, are used to verify the prediction model.

Results showed that the prediction model derived using Buckingham statistical approach is capable to predict the rate of penetration of RSS in directional wells with 85% match for the wells drilled in Egypt and 98% - 99.6% for the wells drilled in the Middle East area. Such results indicate the potential use of the proposed prediction model for evaluating the economics of RSS in drilling directional and extended reach wells.