Angiopoietin-2 as Marker of Angiogenesis And Its Correlation to Prognostic Factors and Treatment Outcome in Patients with Acute Myeloid Leukemia at Presentation and After Induction Chemotherapy

Thesis

Submitted for partial fulfillment of the M.D Degree
In Clinical Hematology
By
Adnan Abdullah Ahmed Bakarman
(M.B, B.Ch, M.S.c)

Supervised By Prof. Dr./Suzan Kamal Al-Din Hussein

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Prof. Dr./Essam Abd Al-Wahed Hassen

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Prof. Dr./Soha Raouf Youssef

Professor Of Clinical Pathology Faculty of Medicine, Ain Shams University

Prof. Dr./Amal Mostafa El-Afifi

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Dr./Hany Mohamed Abd-Allah Hegab

Assistant professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2012

First and foremost, thanks are due to **Allah** the most beneficent, unlimited, continuous blessing on me, support and guidance in every step in our life.

I'm glad and gratefully indebted to **Professor Doctor /Suzan Kamal Al-Din Hussein**, Professor of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University, to whom I owe more than words can express. I am deeply indebted for her remarkable, unlimited help in offering all the facilities for the work and for her kind and competent supervision, encouragement, infinite patience and meticulous care which facilitated the completion of this thesis.

I wish to express my sincere appreciation, supreme gratitude and thanks to **Professor Doctor /Essam Abd Al-Wahed Hassen.** Professor Of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University, for his constant supervision, valuable advice and major help during the progress of the practical work of this thesis.

I would like to express my cordial thanks and sincere appreciation to **Professor Doctor/ Amal Mostafa El-Afifi.** Professor Of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University, for her continuous help, extreme interest that make this work possible and for her close supervision throughout this work.

My sincere appreciation to **Professor Doctor /Soha Raouf Youssef.**Professor of Clinical pathology, Faculty of Medicine, Ain Shams University, for her valuable assistance, unlimited support, and effort to get best out of this work.

I would like to express my cordial thanks to **Doctor/ Hany Mohamed Abd-Allah Hegab** Assistant professor Of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University, for his continuous help and close supervision throughout this work and he gave me generously from his precious time to complete my work.

Last but not least, I would like to record my greatest thanks and gratitude to my family for their actual help and also I would like to thank all my colleagues, friends and my patients without their help, this work could not have been completed.

Contents

List of Abbreviations	i
List of Tables	vi
List of Figures	ix
Introduction and Aim of the work	1
Review of literature	7
Chapter 1: Acute Myeloid Leukemia (AML)	7
Chapter 2: Angiogenesis and Angiopoeitins	81
Patients and Methods	129
Results	140
Discussion	183
Summary	198
Conclusions	202
Recommendations	203
References	204
Arabic Summary	

List of Abbreviations

ABC : ATP binding cassette

aFGF : Acidic fibroblast growth factor

Akt : "Ak" in Akt was a temporary classification

name for a mouse strain developing spontaneous thymic lymphomas. The "t"

stands for 'thymoma'.

ALK : Anaplastic leukemia kinaseALL : Acute lymphoblastic leukemiaAlloSCT : Allogeneic stem cell transplantation

AML : Acute myeloid leukemia

AMLSG : German leukemia study group

Ang : Angiopoietin
Ang-1 : Angiopoietin-1
Ang-2 : Angiopoietin-2
Ang-3 : Angiopoietin-3
Ang-4 : Angiopoietin-4

APL : Acute promyelocytic leukemia

ASCO : American Society of Clinical Oncology

ATP : Adenosine triphosphate ATRA : All trans retinoic acid

AutoSCT : Autologous stem cell transplantation

BAALC gene : Brain, and acute leukemia, cytoplasmic gene

BAX : Bcl-2 associated X protein
 Bcl : B cell leukemia/lymphoma
 bFGF : Basic fibroblast growth factor

BM : Bone marrow

BMT : Bone marrow Transplantation

BUN : Blood urea nitrogen CBF : Core binding factor

CCAAR : Cytidine-Cytidine-Adenosine-Adenosine-

Thymidine enhancer binding

CCD : Central coiled coil domain

CD : Cluster designation

CEC : Circulating endothelial cells

CGH : Array-comparative genomic hybridization

CI : Confidence interval

c-KIT : Steal factor

CLL : Chronic lymphocytic leukemia CML : Chronic myeloid leukemia

CMML : Chronic myelomonocytic leukemia

CMV : Cytomegalovirus

CNS : Central nervous system CR : Complete remission

CRp : Partial complete remissionCSF : Colony stimulating factorCTL : Cytotoxic T lymphocytes

Del : Deletion

DFS : Disease free survival

DIC : Disseminated intravascular coagulopathy

DLBCL : Diffuse large B cell lymphoma

DNA : Deoxynucleic acid

DNMTS : DNA methyltransferases E2f : Transcription factor

EBF : Enhancer binding protein

ECM : Extracellular matrix

ECOG : Eastern Cooperative Oncology Group

ECs : Endothelial cells

EGF : Epidermal growth factor

EPO : Erythropoietin

Erk1 : Extracellular regulated kinases

ETO : Eight twenty one

EVI-1 : Ecotropic virus integration site 1

FAB : French American British

FC : Flow cytometry

FDA : Food and Drug Administration FISH : Fluorescence in situ hybridization

FLT3 : FMS like tyrosine kinase
FN III : Fibronectin type III -domains
FreD : Fibrinogen-related domain
FTI : Farnesyltransferase Inhibitors

G-CSF : Granulocyte colony stimulating factor

GM-CSF: Granulocyte macrophage colony stimulating

factor

GO Gemtuzumab ozogamicin **GVHD** Graft versus host disease **GVL** Graft versus leukemia **HDAC** High dose cytarabine **HGF** Hepatocyte growth factor **HGFs** Hematopoietic growth factors HIF Hypoxia-inducible factor Human leukocyte antigen HLA **HSC** Hematopoietic stem cells HSV-1 Herpes simplex virus-1

HTLV-1 : Human T-cell leukemia virus type 1

IAP : Inhibitors of apoptosisIGF : Insulin like growth factorIHC : Immunohistochemistry

Inv : Inversion

IRF-1 : Interferon regulatory factor-1ITD : Internal tandem duplications

IV : Intravenous route

kD : Kilodaltons

LDH : Lactate dehydrogenaseLLC : Lewis Lung carcinomaLRP : Lung resistance protein

MAPK : Mitogen-activated protein kinase

Mdr-1 : Multidrug resistance-1MDS : Myelodysplastic syndrome

MF : Myelofirbrosis

MLL : Mixed lineage leukemia

MM : Multiple myeloma

MMP : Matrix MetalloproteinaseMPN : Myeloproliferative neoplasms

MPO : Myeloperoxidase

MRD : Minimal residual diseaseMRI : Magnetic resonance imagingMTD : Maximum tolerated dose

mTOR : Mammallian target of rapamycin

MVD : Micro vascular densityNCI : National Cancer Institute

NK : Natural killer cells

NOS : Not otherwise specified

NPM-1 : Nucleophosmin-1NSE : Non specific esteraseOR : Overall survival

OK . Overall survival

PCR : Polymerase chain reaction

PDEGF : Platelet-derived epidermal Growth Factor

PDGF : Platelet-derived Growth Factor

PGF : Placental growth factor

P-gp : P glycoprotein

PI3K : Phosphoinositide 3-kinase

PKC : Protein kinase CPLCgγ : Phospholipase Cγ

PMA : Phorbol 12-myristate-13-acetate

PML : Promyelocytic leukemia

PT : Prothrombin time

PTEN gene : Phosphatase tension gene PTT : Partial thromboplastin time

RAEB : Refractory anemia with excess blast

RAEB-T: Refractory anemia with excess blast in

transformation

RARa : Retinoic acid receptor alpha

Ras : Rat sarcoma

RAS : Retinoic acid syndrome

Rb: Retinoblastoma

RIC : Reduced intensity chemotherapy RPTE : Proximal tubule epithelial cells

RQ-PCR : Real time polymerase chain reaction

RTKs : Receptor tyrosine kinases
SCD : Super clustering domain
SCT : Stem cell transplantation
SDArac : Standard dose cytarabine
SDF-1 : Stromal cell derived factor-1

SEER : Surveillance, Epidemiology and End Results

SMCs : Smooth muscle cells

SNP : Single Nucleotide Polymorphism

STAT3 : Signal transducer and activator of transcription

3

SWOG : Southwest Oncology Group

t : translocation

TdT : Terminal deoxynucleotidyl transferase

TGF- β : Transforming growth factor-beta

TIMPS : Tissue inhibitors of metalloproteinase

TKI : Tyrosine kinase inhibitorsTSGs : Tumor suppressor genesTST : Time sequential therapy

UPAs : Urokinase plasminogen activator system

VCAM-1 : Vascular cell adhesion molecule 1

VE : Vascular endothelial

VEGF : Vascular Endothelial Growth Factor

VHL : Von Hippel Lindau

WHO : World Health Organization

WT1 : Wilm's tumor-1

WTA : Wilm's tumor antigen

List of tables

No	Item	Page
1	Selected Risk Factors Associated With Acute Myeloid Leukemia	13
2	FAB classification of Acute myeloid leukemia	24
3	WHO classification of hematopoietic	27
4	Myeloproliferative neoplasms Common markers used in AML	30
5	Recommended workups for various stages of	38
3	AML	30
6	initial diagnostic evaluation and management of adult patients with AML	39
7	impact of acute myelogenous leukemia on the	44
	clinical outcome	
8	AML prognostic groups based on the	44
	cytogenetics at presentation. SWOG/ECOG	
	cytogenetic classification	
9	Novel agents potentially useful for acute myeloid leukemia	62
10	Pro- and anti-angiogenic factors	109
11	Factors regulating angiogenesis and their possible biological activities	110
12	Differential Expression of Angiopoietins and Ties in Clinical Sample	114
13	Angiogenesis in hematologic malignancies	116
14	Demographic and clinical data of the studied	141
	patients:	
15	Age, duration till presentation and laboratory	144
	nvestigations at diagnosis and after follow up of	
	studied patients	
16	Myeloperoxidase (MPO) test and FAB	146
	subtypes of the studied patients:	
17	Flow cytometry of the studied patients at	148
	diagnosis:	

List of tables (Cont.)

No	Item	Page
18	Patients risk groups according to cytogenetic analysis (n=40)	149
19	Cytogenetic abnormalities in Unfavourable group (n= 10)	150
20	Cytogenetic abnormalities in favourable group (n= 17)	151
21	Clinical outcome of the studied patients:	152
22	Comparison between laboratory data of studied patients before induction and after induction therapy	154
23	Correlation between level angiopoietin-2 before induction therapy and after induction therapy with different clinical and laboratory data of studied patients:	155
24	Correlation between low and high plasma level angiopieitin-2 to the different clinical and laboratory adverse prognostic markers of studied patients at presentation:	157
25	Correlation between low and high level of angiopieitin-2 to the immunophenotypic data, FAB subtypes, cytogenetics risk (as adverse prognostic markers) and outcome of the studied patients at presentation:	158
26	Correlation between level angiopoietin-2 after induction chemotherapy at day 28 th and outcome	160
27	Correlation between outcome of all patients after induction chemotherapy and different clinical and laboratory investigations (as adverse prognostic markers) of the studied patients (n=40):	162

List of tables (Cont.)

No	Item	Page
28	Correlation between outcome of all patients after	164
	induction chemotherapy and immunuphenotypic	
	data, FAB types, cytogenetic data and level of	
	angiopoietin-2 (as adverse prognostic markers)	
	of the studied patients (n=40):	
29	Correlation between outcome of living patient	168
	after 1 st induction of remission and clinical and	
	laboratory data (as adverse prognostic markers) (n=30):	
30	Correlation between outcome of living patient after 1 st induction of remission and	169
	after 1 st induction of remission and immunophenotypic data, FAB subtypes,	
	cytogenetic data and angiopoeitin-2 level (as	
	adverse prognostic markers) (n=30):	
31	Correlation between outcome of remitted	171
	patients after follow up period for 201 days with	1,1
	the different clinical and laboratory data (as	
	adverse prognostic markers) (n=20):	
32	Correlation between outcome of remitted	172
	patients after follow up period for 201 days and	
	the immunophenotypic data, FAB subtypes,	
	cytogenetic risks and angiopoietin-2 (as adverse	
	prognostic markers) (n=20):	
33	ROC curve between outcome and Angiopoietin-	174
	2 in studied patients	
34	Correlation between serum level angiopoietin-2	177
2 -	and survival time of the studied patients (n=40):	4 == 0
35	Correlation between cytogenetic risk and	179
0.5	survival time of the studied patients:	401
36	Correlation between FAB subtypes and survival	181
	time of the studied patients:	

List of Figures

No	Item	Page
1	Process of angiogenesis	87
2	Tumor cells secrete proangiogenic growth factors	90
	that bind to receptors on dormant endothelial	
	Cells (ECs), leading to vasodilatation and an	
	increase in vessel permeability	
3	Pathways and mechanisms that can lead to	92
	increased angiogenesis	
4	Domain organization and complex formation of	102
	the angiopoietins and Tie receptors	
5	Structure of tie receptors and angiopoietins	103
6	The growth of hematological tumor cells	106
7	Reagent preparation	135
8	Human angiopoietin-2 concentration	138
9	Percentage of BM blasts at presentation and after	145
	induction therapy	
10	Level of angiopoieitin-2 at presentation and after	145
	induction therapy	
11	FAB classification of studied patients at diagnosis	147
12	Flow cytometry of the studied patients at	148
	diagnosis	
13	Patients risk groups according to cytogenetic	149
	analysis	
14	Cytogenetic abnormalities in Unfavourable group	150
15	Cytogenetic abnormalities in favourable group	151
16	Clinical outcome of the studied patients	153
17	Correlation of CD13 expression and level of	159
	angiopoietin-2 at presentation	
18	Correlation of outcome and angiopietin-2 level at	159
	presentation	
19	Correlation between level angiopoietin-2 and	160
	outcome after induction chemotherapy at day 28 th	

List of Figures (Cont.)

No	Item	Page
20	Impact of the gender on the outcome of all	165
	patients	
21	Impact of splenomegaly on the outcome of all	165
	patients	
22	Impact of lymphadenopathy on the outcome of all	166
	patients	
23	Impact of level of angiopoietin-2 on the outcome	166
	of all patients	
24	(a & b): Receiver Operating Charactersitcs (ROC)	175
	curve for cut-off levels of angiopoietin-2 in the	
	prediction of the outcome	
25	Kaplan Meier curve for overall survival time of	176
	the studied patients	
26	Correlation between serum level angiopoietin-2	178
	and survival time of the studied patients	
27	Correlation between FAB subtypes and survival	182
	time of the studied patients	

Introduction

Leukemia is one of the most common and worldwide malignant disease. Chemotherapy for leukemia frequently causes resistance and side effects to patients. Therefore, development of effective therapeutic treatment agents for leukemia is an important and urgent topic (Chen et al.,2009)

Leukemias make up to ~2% of adult cancers but comprise a heterogeneous group of diseases (Chee, 2007). Acute myeloid leukemia (AML) is a malignancy of the myeloid elements, the hallmark being a block in normal differentiation and/or uncontrolled growth and lack of differentiation of any one of the hematopoietic progenitors cells **Byrd et al.,(2008)**, leading to the massive accumulation of immature leukemic "blast cells" which usually results in rapid and severe disruption of normal bone marrow function (Chee, 2007)

Acute myeloid leukemia (AML) is the most common acute leukemia affecting adults, and its incidence increases with age. Senior patients with AML usually have poor performance status and chemotherapeutic tolerance (**Roboz**, 2007).

Acute myeloid leukemia (AML) is predominantly a disease of the elderly as more than half of the patients with this malignancy are over 60 years old. In older patients, the benefit associated with standard intensive chemotherapy remains debated because of excessive toxicity and short duration of response (Malfuson et al., 2008)

The most important clinical progress to date in acute myeloid leukemia (AML) has been largely focused in two major areas. One is the area of treatment modality; specifically, the more widespread use of allogeneic stem cell transplantation. The other area of progress has, occurred in the