

Preparation of lanthanum zirconate ceramics from Egyptian black sand minerals for using in emerging electronic applications

ThesisSubmitted for Ph.D Degree in Chemistry

 $\mathcal{B}y$

Heba Mashaal Mohammed Ali

To

Department of Chemistry Faculty of Science Ain Shams University

ACKNOWLEDGMENT

ACKNOWLEDGEMENT

First of all, all thanks and praise are to **Allah** for giving me prosperity and strength to fulfill this work.

Special thanks and deep gratitude are devoted to *Prof. Mohammed Yousef Elkady* (Faculty of Science, Ain Shams University) for his supervision, generous guidance, valuable advice and sincere help throughout this work.

I cannot thank enough *Prof. Ahraf A. Mohamed* (Faculty of Science, Ain Shams University) for his input. I will be forever indebted for his constant guidance and scientific knowledge throughout my Ph D. As a fellow supporter, I couldn't have asked for a better supervisor and fruitful discussions in all steps of this work.

I would like to thank *prof. Ahmed Daher* (Nuclear Materials Authority) for his valuable knowledge about the practical work and scientific information that has been essential during my Ph.D.

Special gratitude and deep acknowledgements are to **Dr. Wafaa Hosny and Dr Sameh Negm** for following up the details of this study.

I would also like to thank. *Drs. Waleed Mahmmoud* and *Amr Abdelkader* (Nuclear Materials Authority) for supplying the ore samples and for helping us to complete this work.

Deepest thanks for all the staff members and colleagues of Department and the team work of XRD lab, Nuclear Materials Authority for encouragement and cooperation.

Many thanks are to the staff members, head of Chemistry Department, and Dean of the Faculty of Science, Ain Shams University for their help in this work.

CONTENTS

CONTENTS

		Page №
	ABSTRACT	
	LIST OF TABLES	
	LIST OF FIGURES	
	CHAPTER I INTRODUCTION AND LITERATURE REVIEW	
I	Materials Half-Cycle: from Ore to Useful	
	Compounds	3
I.1	Rare Earths Occurrence and Production	3 3 3
I.1.1	Resources of REEs	3
I.1.1.1.	Global Natural Resources of REEs	4
I.1.1.2.	Egyptian Resources of REEs	7
I.1.2.	Processing of The Lanthanides	8
I.1.2.1	Leaching and Recovery of Total REEs	8
I.1.2.2.	Chemical Processing of Monazite	8
I.1.2.3.	Separation of Individual REEs	12
I.1.1.3.1.	Selective Oxidation/Reduction	12
I.1.1.3.2.	Fractional Crystallization	15
I.1.1.3.3.	Fractional Precipitation	15
I.1.1.3.4.	Solvent Extraction Technique	15
I.1.1.3.5.	Ion Exchange Chromatography	18
I.1.1.3.5.1.	Chemistry of REE Extraction by Ion Exchange	
	Resins	19
I.1.1.3.5.2.	Current Practice for REE Extraction by Ion	
	Exchange	19

I.2.	Zirconium Occurrence and Production	22
I.2.1.	Zircon Mineral (Zr(Hf)SiO ₄)	22
I.2.2	Zirconium and Hafnium	23
I.2.2.1	Chemistry of Zirconium and Hafnium	23
I.2.3	Extraction and Separation Methods of Zirconium	
	and Hafnium	25
I.2.3.2	Solid Phase Extraction (SPE) Methods of	
	Zirconium and Hafnium	27
I.2.3.3.	Silica Gel Column	27
I.2.3.4.	Paper Chromatography	29
I.2.3.5.	Cellulose Column	29
I.2.3.6.	Ion Exchange Resins	29
I.2.3.7.	Cation Exchange Resins	30
I.2.3.8.	Anion Exchange Resins	31
I.3.	Thermal Barrier Coating and its Material	
	Challenges	32
I.4	Lanthanum Zirconate: the Next-Generation	
	Topcoat Material	34
	CHAPTER II	
	EXPERIMENTAL WORK	
II.1.	Chemicals and Reagents	36
II.2	Preparation of Pure La ₂ O ₃ from Egyptian	
	Monazite	36
II.2-1	Processing of Monazite	36
II-2-1-1	Effect of Type of Acid on Dissolution	37
II-2-1-2-	Optimization H ₂ SO ₄ Acid Agitation Leaching	38
II.2.1.3.	Recovery Procedure	39
II-2-1.3.1	Separation of Uranium from Sulfate Leach Liquor	39
II.2.1.3. 2.	Separation of Thorium from Th-RE Oxalate Cake	39
II.2.1.3. 3.	Separation of Pure Cerium (IV) from the	
	Prepared Monazite Rare Earth Cake	40
II-2-1-4	Selective Recovery of Pure La from Rare Earth	
	II	

	Concentrate Almost Free From Cerium Oxide	41
II-2-2	preparation of Pure ZrO ₂ from Egyptian Zirconia	42
II-2-2-1	Alkali Fusion of Zircon	42
II-2-2-2	Preparation of Zirconia Through Oxychloride	
	Treatment	43
II.2-3	Optimization of La ₂ Zr _{2f} O ₇ Ceramic Sintering	
	Parameters using Synthetic Powders	43
II.2-4	preparation of Lanthanum Zirconate Ceramic	
	from Egyptian Ores	45
II.3	Analytical Methods	46
II.3-1	Determination of Rare Earth Elements	46
II.3.2	Uranium Analysis	46
II.3-3.	Determination of Thorium	47
II.4-	Equipment	47
II.4-1	XRD measurement	47
II. 4-2	SEM	47
II. 4-3	ICP	47
II.4-4	Thermal Conductivity Measurements	48
II.4-5	Spectrophotometer	48
II. 4-6	Hydraulic Press 15 Ton	48
II.4-7	Muffle Electric Furnace	48
	CHAPTER III	
	RESULTS AND DISCUSSION	
Part I.	Optimization of La ₂ Zr _{2f} O ₇ Ceramic Sintering	
	Parameters using Synthetic Powders	49
III.I. 1.	Preformation Thermodynamic Calculations	50
III-I.2	Effect of Sintering Temperature	52
III-I-2 -1	XRD Result Analysis	52
III-I-2-2	Raman Analysis	54
III-I-2-3	SEM Analysis	56
III-I.3	Effect of Sintring Time	60
III-I.4	Effect of La ₂ O ₃ to ZrO ₂ Ratio	62
	III	

111-1.4.	Effect of the Formation Parameters on The	- 4
	Thermal Properties of La ₂ Zr ₂ O ₇	64
Part II.	Preparation of Lanthanum Zirconate Ceramic	
	from Egyptian Black Sand	66
III-II-1	Preparation of Pure La ₂ O ₃ from Egyptian	
	monazite	66
III-II-1-1	Characterization Rossita monazite mineral	66
III-II-1-2	Processing of Egyptian Monazite	67
III-II-1-2-1	Optimization H ₂ SO ₄ Acid Agitation Leaching	70
III-II-1-2-1-1.	Effect of Acid Concentration	70
III-II-1-2-1-2.	Effect of Solid Liquid Ratio	72
III-II-1-2-1-3	Effect of Reaction Time	74
III-II-1-2-1-4	Effect of Temperature	75
III-II-1-2-2	Recovery Procedure	77
III-II-1-2-2-1-	Preparation of Sulfate Solution	78
III-II-1-2-2-2-	Separation of Uranium From Sulfate Leach	
	Liquor	78
III-II-1-2-2-3.	Selective Separation of Thorium From The	
	Prepared RE -Th Oxalate Cake	79
III-II-1-2-2-3-1	Effect of Ammonium Carbonate Concentration	79
III-II-1-2-2-3-2.	Effect of Solid / Liquid Ratios	81
III-II-1-2-2-3-3.	Effect of Dissolution Time	82
III-II-1-2-2-3-4.	Effect of Dissolution Temperature	83
III-II-1-2-2-3	Separation of Pure Cerium (IV) from the Prepared	
	Monazite Rare Earth Concentrate	85
III-II-1-2-2-3-1.	Effect of pH Factor	86
III-II-1-2-2-3-2	Effect of reaction time	87
III-II-1-2-2-3-3.	Effect of Added Amount of KMnO ₄	89
III-II-1-2-2-3-4.	Purification of Ce	91
III-II-1-3	Selective Recovery of Individual La Products	92
III-II -2.	Preparation of Pure ZrO ₂ from Egyptian Zircon	95
III-II-2-1	Characterization of Egyptian Zircon	95
III-II-2-2	Egyptian Zircon Alkali Fusion	96
III-II-2-2-1	Effect Of Fusion Temperature Using Different	

	Molar Ratio Of Zircon: KOH-NaOH	97
III-II-2-3.	Zirconia Production through Oxychloride	
	Treatment	99
III-II.2.3-1	Effect of HCl Concentration	101
III-II-2-3-2	Effect of Solid to Liquid Ratio	102
III-II-3	Preparation of La ₂ Zr ₂ O ₇ From Egyptian Ore	105
	SUMMARY AND CONCLUSIONS	
	Summary and Conclusion	111
	References	114
	Arabic Summary	

LIST OF TABLES

Table №		Page №
Table 1:	The average rare earth content in % of the major rare earth minerals	5
Table 2:	The distribution of RE ₂ O ₃ in monazite from different locations	6
Table 3:	Chemicals and reagents used in the experimental work	37
Table 4:	showing the studied factors controlling sulfuric acid agitation leaching	38
Table 5:	the factors controlling cerium separation	40
Table 6:	the studied parameters of Ce (IV) separation	41
Table 7:	shows the thermodynamic data for La ₂ Zr ₂ O ₇ formation	51
Table 8:	The chemical composition of the working Egyptian Rossita monazite concentrate (95%)	67
Table 9:	Thermodynamic data for REEs dissolution reactions using H ₂ SO ₄	68
Table 10:	Thermodynamic data for REEs dissolution reactions using HCl	69
Table 11:	shows the REE and Th leaching efficiency with acid conc.	71
Table 12:	shows the REE and Th leaching efficiency with solid liquid ratio	73
Table 13:	the REE and Th leaching efficiency with time	74
Table 14:	the REE and Th leaching efficiency with temperature	76
Table 15:	chemical composition of sulfate solution	78
Table 16:	Effect of [(NH ₄) ₂ CO ₃] conc. upon Th dissolution efficiency	80
Table 17:	Effect of solid liquid ratio up on Th dissolution efficiency	81
Table 18:	Effect of dissolution time up on Th dissolution efficiency	83

Table 19:	Effect of temperature up on Th dissolution efficiency	84
Table 20:	ICP chemical analysis of REE	85
Table 21:	Effect of final pH value upon the recovery of Ce (IV)	87
Table 22:	effect of reaction time up on the recovery of Ce (IV)	88
Table 23:	effect the added amount KMnO ₄ upon the recovery of Ce (IV)	89
Table 24:	EDTA eluted Ce- free REEs in the different fractions separated by the band displacement technique using	0.4
Table 25:	Dowex 50 W-X8cation exchange resin XRF analysis of chemical composition of Egyptian	94
	zircon	95
Table 26:	XRF Analyses for the obtained zirconia	105