Ain Shams University, Cairo, Egypt Faculty of Computer and Information Sciences Department of Computer Science

Intelligent Machine learning Algorithms for processing the Brain Images

Thesis submitted to the Department of Computer Science,
Faculty of Computer and Information Sciences,
Ain Shams University, Cairo, Egypt
In partial fulfillment of the requirements for
the Degree of PhD. in Computer Science

BY

MSc. Heba Mohsen Mohamed Mosaad Hussien

Assistant Lecturer, Computer Science Department, Faculty of Computers and Information Technology, Future University, Cairo, Egypt

Under Supervision of

Prof. Dr. Abdel-Badeeh Mohamed Salem

Professor, Computer Science Department Faculty of Computer & Information Sciences, Ain Shams University

Prof. Dr. El-Sayed Mohamed El-Horbaty

Professor, Computer Science Department Faculty of Computer & Information Sciences, Ain Shams University

Prof. Dr. El-Sayed Abdel-Rahman El-Dahshan

Professor, Faculty of Computers and Information Technology, The Egyptian E-learning University

Acknowledgment

In the name of *Allah*, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to *Allah* for the strength and his blessing in completing this thesis that without *Him* nothing was possible.

I would like to acknowledge all those who helped me to complete this thesis. My special appreciation goes to my supervisor, Professor Abdel-Badeeh M. Salem, for his supervision and constant support, valuable advises and helpful guidance during the work. My sincere gratitude goes for Professor El-Sayed El-Dahshan whose careful reading and constructive comments was valuable to complete this work. Also, my deepest thanks to Professor El-Sayed El-Horbaty for his time and help to put the work in this suitable form.

Finally, I would be forever grateful for my parents who inspired me, put me on the way and supported me for completing and achieving all what I reached today. They are best my role models for a scientist, mentor and teacher. Also, I'm very blessed for my brothers for their help, support and encouragement all the way.

Publications

- 1. Heba Mohsen, El-Sayed A. El-Dahshan, El-Sayed M. El-Horbaty and Abdel-Badeeh M. Salem. Classification using Deep Learning Neural Networks for Brain Tumors, Future Computing and Informatics Journal, 2018, doi: 10.1016/j.fcij.2017.12.001 (accepted).
- 2. Heba Mohsen, El-Sayed A. El-Dahshan, El-Sayed M. El-Horbaty and Abdel-Badeeh M. Salem. Classification of Brain MRI for Alzheimer's Disease Based on Linear Discriminate Analysis, Egyptian Computer Science Journal, September 2017, Vol. 41 No.3, pp. 44-52.
- 3. Heba Mohsen, El-Sayed A. El-Dahshan, El-Sayed M. El-Horbaty and Abdel-Badeeh M. Salem. Brain Tumor Type Classification Based on Support Vector Machine in Magnetic Resonance Images, Annals Of "Dunarea De Jos" University Of Galati, Mathematics, Physics, Theoretical Mechanics, Fascicle II, Year IX (XL) 2017, No. 1.
- 4. Heba Mohsen, El-Sayed A. El-Dahshan, El-Sayed M. El-Horbaty and Abdel-Badeeh M. Salem. Intelligent Methodology for Brain Tumors Classification in Magnetic Resonance Images, International Journal of Computers, 2017, Vol 11, pp.1-5.
- 5. Heba Mohsen, El-Sayed A. El-Dahshan, El-Sayed M. El-Horbaty and Abdel-Badeeh M. Salem. A Comparative Study of Segmentation Techniques for Brain Magnetic Resonance Images, Athens: ATINER'S Conference Paper Series, No: COM2016-1994, 2016.

Abstract

Machine learning became very important in extracting meaningful relationships and making accurate prediction in many fields. In the area of processing the brain images, Computer Aided-Diagnosis (CAD) systems are basically relied on different machine learning techniques in all its stages to implement a system that can help the radiologists by providing a second opinion that can assist in detection and diagnosis of brain tumors based on imaging techniques that are widely used in clinical care. Magnetic resonance imaging (MRI) is an imaging technique that plays a vital role in detection and diagnosis of brain tumors in both research and clinical care for providing a detailed information about the brain structure and its soft tissues.

This study concerned with developing a CAD system that can process the brain MR images for detection and diagnosis of different brain tumors using several machine learning techniques. In this study, two types of systems are implemented. The first type is to differential diagnose of 3 types of malignant brain tumors (i.e., glioblastoma, sarcoma and metastatic bronchogenic carcinoma) from normal brain subjects using brain MRIs from a real online dataset of brain MRIs. However, the second type is to differential diagnose of cognitive normal (CN) brain from Alzheimer's disease (AD) brain subjects using brain MRIs from two real online datasets of brain MRIs.

For the first type of CAD system, three CAD systems with several models are presented in this study through the chapters. The three CAD systems included three stages: segmentation, feature extraction and selection and classification. K-means and Fuzzy C-means are two segmentation techniques that have been used separately to segment the input brain MRIs from the dataset used. Gray level co-occurrence matrix (GLCM) and Discrete Wavelet Transform (DWT) integrated with Principal Component Analysis (PCA) are also two techniques for feature extraction and selection that have been used separately. The three CAD system models are combination of these techniques in the first two stages with a selected

classifier for the final stage. In the last stage, for the classification three different supervised classifiers are used for each system: (i) hybrid Support Vector Machine (SVM) which is integration of Linear-SVM for differentiating between normal and abnormal brain subjects and Multi-SVM classifier for identifying the tumor type in the abnormal brain subjects, (ii) SMO-SVM which is sequential minimal optimization (SMO) algorithm for training Support Vector Machine (SVM) and (iii) Deep Neural Network (DNN). The performance of the three classifier is evaluated using different measures giving high average classification rates and precision that proved their efficiency and reliability.

The second type of CAD systems presented in this study is a CAD system for differential diagnose of CN brain from AD brain subjects based on Linear Discriminate Analysis (LDA) classifier. The developed system includes two stages: feature extraction and selection and classification stage. Extracting the features from the input brain MRIs of the two datasets used is done for each dataset separately using DWT integrated with PCA for reducing the number of features to avoid classification complications and reduce the computation time and costs. The system presented is tested using two different datasets obtained from online datasets of real human brain MRIs. The performance of the presented system proved its efficiency and reliability in the problem which it is used for according to different performance measures.

Table of Contents

Acknowledgment	II
Publications	III
Abstract	IV
Table of Contents	VI
List of Figures	X
List of Tables	XIII
List of Abbreviations	XIV
List of Algorithms	XVI
Chapter 1 Introduction	1
1.1 Problem definition	3
1.2 Objectives	4
1.3 Methodology	4
1.4 Contribution	5
1.5 Thesis Organization	6
Chapter 2 Medical Imaging Techniques for Human Brain	8
2.1 Introduction	8
2.2 History of brain imaging	9
2.3 Modern brain imaging techniques	10
2.3.1 Computed Tomography Scan	10
2.3.2 Magnetic Resonance Imaging Scan	11
2.3.3 Positron Emission Tomography Scan	12
2.3.4 Single Positron Emission Computed Tomography Scan	13
2.3.5 Functional Magnetic Resonance Imaging Scan	13
2.3.6 Electroencephalography Scan	14
2.3.7 Magnetoencephalography Scan	15
2.4 Brain imaging using MRI scans	15
2.5 Summary	17

Chapter 3 Mach	nine Learning Techniques for processing Brain Images .	19
3.1 Introduct	tion	19
3.2 Segmento	ation techniques	20
3.2.1	MRI Segmentation Techniques	21
3.2.2	A comparative study between the Segmentation Techniques	23
3.3 Feature E	Extraction techniques	27
3.3.1	Gray level co-occurrence matrix	28
3.3.2	Discrete Wavelet Transform	31
3.3.3	Principal Component Analysis	35
3.4 Classifica	tion techniques	37
3.4.1	Support Vector Machine classifier	38
3.4.2	Linear Discriminant Analysis classifier	40
3.4.3	K-Nearest neighbors based classifier	40
3.4.4	Artificial neural network based classifier	42
3.4.5	Convolutional neural networks classifier	43
3.4.6	Deep neural network classifier	44
3.5 Summary	7	45
Chapter 4 Brai	n Tumors Classification based on hybrid SVM classifier	47
	ology	
4.2 Databas	e	49
4.3 Segment	tation	52
4.4 Feature	Extraction	53
4.5 Classifica	ation	55
4.5.1	Linear-SVM	56
4.5.2	Multi-SVM	56
4.6 Impleme	entation	56
4.7 Experim	ental Evaluation and Discussion	59
4.8 Summar	y	62
Chantar E Drai	n Tumore Classification based on SMO SVM	62
_	n Tumors Classification based on SMO-SVM	
	e	65
J.Z. DULUDUS	r	[17

	5.3 Segme	entation	66
	5.3.1.	K-Means Clustering	66
	5.3.2.	Fuzzy C-means (FCM)	66
	5.4 Featu	re Extraction	67
	5.5 Classij	fication	69
	5.6 Imple	nentation	70
	5.7 Experi	mental Evaluation and Discussion	75
	5.7.1	Training and Testing sets	75
	5.7.2	Performance evaluation	76
	5.8 Summ	ary	83
	-	nin Tumors Classification using Deep Learning N	
	6.1 Metho	dology	84
		ase	
	6.3 Segme	entation	87
	6.4 Featu	re Extraction	88
	6.5 Classij	ication	89
	6.6 Imple	nentation	89
	6.7 Experi	imental Evaluation and Discussion	93
	6.8 <i>Summ</i>	ary	95
Cl.	anton 7	Classification of Duain MDI for Alphaineaula Di	bd
	•	Classification of Brain MRI for Alzheimer's Dis	
LII		minate Analysis	
		al Aspects of Alzheimer's disease	
		dology	
		ase	
		re Extraction	
		ication	
	-	nentation	
	-	imental Evaluation and Discussion	
	/.8 Summ	arv	108

Chapter 8	Conclusions and Future Work	109
8.1 Cor	nclusions	109
8.2 Fut	ture Work	112
References	5	113

List of Figures

Figure 1.1 General Structure for the CAD methodology for automatic classification of brain tumors
Figure 2.1 A sample of brain CT scan
Figure 2.2 A sample of brain sagittal and coronal MRI scans
Figure 2.3 A sample of brain PET scan
Figure 2.4 A sample of brain SPECT scans
Figure 2.5 A sample of brain fMRI scan
Figure 2.6 Types of axial MRI scan (a) T1 scan (b) T2 scan (c) PD scan of the same subject
Figure 2.7 Types of orientations in T1-weighted MRI (a)axial (b)coronal (c)sagittal
Figure 3.1 General structure of brain images processing methodology
Figure 3.2 Machine Learning-based Segmentation Techniques
Figure 3.3 GLCM matrix calculation
Figure 3.4 Subband decomposition of DWT implementation
Figure 3.5 2D DWT decomposition scheme of an image
Figure 3.6 A sample of brain MRI with 3-levels of wavelet decomposition 34
Figure 3.7 Level-3 DWT image decomposition scheme
Figure 3.8 PCA algorithm
Figure 3.9 An optimal hyperplane by a linear SVM that separates two classes by finding the maximum margin
Figure 3.10 K-Nearest Neighbor technique
Figure 3.11 A typical architecture for the ANN classifier
Figure 3.12 A typical CNN architecture
Figure 3.13 General architecture of the DNN classifier 44

Figure 4.1 The presented methodology of the CAD system 4	8
Figure 4.2 Sample of brain MRIs for the four types from the database 5	1
Figure 4.3 Sample of a brain MRI from the dataset after segmentation usin k-means	
Figure 4.4 The result of applying DWT to segmented brain MRI 5	4
Figure 4.5 Screenshots of the developed CAD system based on hybrid SVI classifier	
Figure 4.6 Comparison graph for the performance of Linear-SVM classifier using the two feature extraction techniques	_
Figure 5.1 The developed four model CAD methodology using SMO classifier 6	4
Figure 5.2 A sample brain MRI segmentation using K-means	7
Figure 5.3 A sample brain MRI segmentation using FCM	7
Figure 5.4 The result of applying DWT to segmented brain MRI 6	9
Figure 5.5 Screenshots of MATLAB interface for segmentation and feature extraction for SMO classifier	
Figure 5.6 Screenshots of the classification using SMO classifier in WEKA 7	4
Figure 5.7 Brain tumor types to be classified	5
Figure 5.8 Precision of Brain MR image type using SMO classifier	9
Figure 5.9 Recall of Brain MR image type using SMO classifier	0
Figure 5.10 Comparison graph for the average of the performance measures over all the testing methods	
Figure 6.1 The developed CAD methodology based on DNN classifier	5
Figure 6.2 Sample from the brain MRIs in the dataset of the four types of image	
Figure 6.3 Sample of brain MRIs from the dataset segmented using Fuzy C-means	-
Figure 6.4 The result of applying DWT to segmented brain MRI	8
Figure 6.5 Screenshots of MATLAB interface for segmentation and feature extraction for DNN classifier	

Figure	6.6	Screenshots of the classification using a sample of the selected classifiers in WEKA92
Figure	6.7	Comparison graph for the performance of DNN, KNN K=1and 3, LDA and SMO classifiers
Figure		Block diagram of the developed methodology architecture for AD diagnosis
Figure	7.2	Sample of ADNI dataset
Figure	7.3	Sample of Harvard Medical School
Figure		Screenshots of MATLAB interface for preparing the CSV file of the extracted features
Figure		Screenshots of the classification using WEKA for ADNI and Harvard medical school dataset
Figure	7.6	ROC for CN and AD classes over ADNI dataset 106
Figure	7.7	ROC for CN and AD classes over Harvard medical school dataset 106
Figure		Comparison graph for the performance measure over the two datasets

List of Tables

Table 3.1 Segmentation Techniques Important Features 22
Table 3.2 Comparative study between segmentation techniques in research 24
Table 4.1 Training and testing sets for brain MRI dataset 55
Table 4.2 Different classified groups 60
Table 4.3 Performance measures for Linear-SVM classifier 60
Table 4.4 Tumor classes accuracy using Multi-SVM 61
Table 5.1 Performance measures for GLCM feature extraction and SMO-SVM classifier 78
Table 5.2 Performance measures for DWT +PCA feature extraction and SMO-SVM classifier 78
Table 6.1 Performance measures of DNN, KNN K=1 and 3, LDA and SMC classifiers 93
Table 7.1 The performance measures over ADNI dataset 107
Table 7.2 The performance measures over Harvard medical school dataset 107

List of Abbreviations

WHO	World Health Organization
NCIS	National Cancer Institute statistics
CBTRUS	Central Brain Tumor Registry of the United States
MRI	Magnetic Resonance Imaging
CAD	Computer-Aided Detection
GLCM	Gray Level Co-Occurrence Matrix
DWT	Discrete Wavelet Transform
PCNN	Pulse-Coupled Neural Network
PCA	Principle Component Analysis
SVM	Support Vector Machine
KNN	K-Nearest Neighbor
LDA	Linear Discriminant Analysis
DNN	Deep Neural Network
CN	Cognitive Normal Brain
AD	Alzheimer's Disease
AD CT	Alzheimer's Disease Computed Tomography
СТ	Computed Tomography
CT PET	Computed Tomography Positron Emission Tomography
CT PET SPECT	Computed Tomography Positron Emission Tomography Single Photon Emission Computed Tomography
CT PET SPECT FPCNN	Computed Tomography Positron Emission Tomography Single Photon Emission Computed Tomography Feedback Pulse-Coupled Neural Network
CT PET SPECT FPCNN PEG	Computed Tomography Positron Emission Tomography Single Photon Emission Computed Tomography Feedback Pulse-Coupled Neural Network Pneumoencephalography
CT PET SPECT FPCNN PEG fMRI	Computed Tomography Positron Emission Tomography Single Photon Emission Computed Tomography Feedback Pulse-Coupled Neural Network Pneumoencephalography Functional Magnetic Resonance Imaging
CT PET SPECT FPCNN PEG fMRI EEG	Computed Tomography Positron Emission Tomography Single Photon Emission Computed Tomography Feedback Pulse-Coupled Neural Network Pneumoencephalography Functional Magnetic Resonance Imaging Electroencephalography
CT PET SPECT FPCNN PEG fMRI EEG MEG	Computed Tomography Positron Emission Tomography Single Photon Emission Computed Tomography Feedback Pulse-Coupled Neural Network Pneumoencephalography Functional Magnetic Resonance Imaging Electroencephalography Magnetoencephalography
CT PET SPECT FPCNN PEG fMRI EEG MEG CNN	Computed Tomography Positron Emission Tomography Single Photon Emission Computed Tomography Feedback Pulse-Coupled Neural Network Pneumoencephalography Functional Magnetic Resonance Imaging Electroencephalography Magnetoencephalography Convolutional Neural Networks
CT PET SPECT FPCNN PEG fMRI EEG MEG CNN ANN	Computed Tomography Positron Emission Tomography Single Photon Emission Computed Tomography Feedback Pulse-Coupled Neural Network Pneumoencephalography Functional Magnetic Resonance Imaging Electroencephalography Magnetoencephalography Convolutional Neural Networks Artificial Neural Network

DL	Deep Learning
NN	Neural Networks
RBF	Radial Basis Function
FFNN	Feed Forward Neural Network
MLP	Multi-Layer Perceptron
BP	Backpropagation algorithm
GM	Gray Matter
WM	White Matter
CSF	Cerebrospinal Fluid
Linear-SVM	Linear Support Vector Machine
multi-SVM	Multi-class Support Vector Machine
WEKA	Waikato Environment for Knowledge Analysis
SMO-SVM	Sequential Minimal Optimization algorithm for SVM
CSV	Comma Separated Values
ROC	Receiver Operating Characteristic
AUC	Area Under the Curve
MCI	Mild Cognitive Impairment
ADNI	Alzheimer's Disease Neuroimaging Initiative