Randomized Clinical Study Comparing Early Active Rehabilitation Program for Flexor Tendon Repair versus Early Passive Rehabilitation Program

Thesis

Submitted for Partial Fulfillment of Master Degree In General Surgery

By Amir Mahmoud Mohamed Labib

M.B.B.Ch., Faculty of Medicine- Ain Shams University

Supervised by **Prof. Dr. Mohey El Din Ragab El Banna**

Professor of General Surgery Faculty of Medicine- Ain Shams University

Dr. Ahmed Mohamed Abdel Sallam

Lecturer of Plastic Surgery Faculty of Medicine- Ain Shams University

Dr. Hala Mohamed Abdel Sabour

Lecturer of Physical Medicine Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Before all, Thanks to Allah, The Most Kind and The Most Merciful.

I would like to express my profound gratitude to **Prof. Dr. Mohey El Din Ragab El Banna**, Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his most valuable advices and support althrough the whole work and for dedicating much of his precious time to accomplish this work. I really have the honor to complete this work under his generous supervision.

I am also grateful to **Dr. Ahmed Mohamed Abdel Sallam,** Lecturer of Plastic Surgery, Faculty of Medicine, Ain Shams University, for his unique effort, considerable help, assistance and knowledge he offered me throughout the performance of this work.

And special thanks to **Dr. Hala Mohamed Abdel Sabour**, Lecturer of Physical Medicine, Faculty of Medicine, Ain Shams University for her great help and support throughout this work.

Last but not least, I would like to present a lot of thanks to my family, specially my Wife whom without their help and support, this work could not come to birth.

Tist of Contents

Subject P	age No.
List of Abbreviations	I
List of Tables	II
List of Figure	III
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Anatomy	5
Chapter (2): Diagnosis of Hand Injuries	35
Chapter (3): Methods of Repair of Flexor Tendor	l
Injuries	47
Chapter (4): Methods of Rehabilitation	83
Patients and Methods	98
Results	107
Discussion	113
Summary and Conclusion	118
References	122
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
APL	Abductor pollicis longus
DIP joint	Distal Inter-Phalangeal joint
ECRB	Extensor carpiradialis Brevis
ECRL	Extensor carpiradialis longus
ECU	Extensor carpiulnaris
EDC	Extensor digitorum communis
EDM	Extensor digiti minimi
EIP	Extensor indices Proprius
EPB	Extensor pollicis brevis
EPL	Extensor pollicis Longus
FDP	Flexor Digitorum Profundus
FDS	Flexor Digitorum Superficialis
FPL	Flexor pollicis longus
IF	Index Finger
LF	Little Finger
MCP joint	Meta-Carpo-Phalangeal joint
MF	Middle Finger
PIP joint	Proximal Inter-Phalangeal joint
RF	Ring Finger

List of Tables

Table	Title	Page
1	Medical research council scale of muscle power	42
2	Demographic data of patients	100
3	Details of injury	101

List of Figures

Figure	Title	Page
1.1	Superficial dissection of the palm, showing orientation of the palmar fascia	7
1.2	The palmar fascia with its longitudinal, transverse, and vertical fibers	8
1.3	These deep palmar and midpalmar axial views of the hand reinforce the concept of distinct anatomic compartments separated by fascia	9
1.4	The components of the digital fascia that help to anchor the axial plane skin are Grayson's ligaments palmar to the neurovascular bundles and Cleland's ligaments dorsal to the bundles	10
1.5	Exploded view of the functional elements of the hand	12
1.6	Bony anatomy of the wrist and hand	14
1.7	The flexor tendon pulley system for fingers and thumb	19
1.8	The common configuration of the vincula	21
1.9	Flexor tendon zones are classified for their relevance to flexor tendon injuries	22
1.10	Flexor tendon zones including the thumb	23
1.11	Upper arm vascular anatomy and surrounding structures	26

Figure	Title	Page
1.12	Hand vascular anatomy and surrounding structure	28
1.13	Tendon vascularity is illustrated	29
1.14	The radial nerve in the forearm innervates the extensor muscles and then lends sensibility to the radial dorsal aspect of the hand	30
1.15	The median nerve classically lends sensibility to the palmar aspect and the distal dorsum of the thumb, index, long, and radial half of the ring fingers	32
1.16	The ulnar nerve classically gives sensory innervation to the littler finger and the ulnar half of the ring finger	34
2.1	Each finger in correct alignment points to the tubercle of the scaphoid when flexed individually	38
2.2	Examination of Flexor Digitorum Superficialis (FDS) of the little finger	43
2.3	Examination of Flexor Digitorum Profundus (FDP) of the little finger	44
2.4	Examination of Flexor Pollicis Longus (FPL)	44
2.5	Allen test	46
3.1	Summary of factors determining the strength of surgically repaired tendons	52
3.2	A decision-making flow chart of primary and delayed primary flexor tendon repairs	58

Figure	Title	Page
3.3	Methods of making a tendon-to-bone junction in zone	62
3.4	Profundus avulsion classification of Leddy and Packer	64
3.5	Skin incisions utilized to approach the tnedons in the digits and palm	66
3.6	Variations in the design of suture resulting from relative orientation of the transverse and longitudinal components	69
3.7	Locking and gasping tendon-suture junctions have different interactions between the suture and tendon fibers	72
3.8	Different tendon-suture junctions: different locking junctions and a grasping junction	72
3.9	Methods of making a two-strand modified Kessler repair (A), and a four-strand cruciate repair (B)	76
3.10	Four-strand Strickland repair (A), six-strand original Savage repair (B), six-strand modified Save (Adelaide) repair (C), and six-strand Tang (or three Tsuge) repair	76
3.11	Methods of making a modified six-strand Tang repair forming an M configuration (M-Tang repair).	77
3.12	Methods of making a variety of four-strand repair using one needle carrying two suture strands (looped or separated)	78

Figure	Title	Page
3.13	Two bad repairs decrease the strength	79
3.14	Methods of making peripheral sutures	81
4.1	The approximate flexor tendon excursions	
	are depicted in relation to their position in	88
	the hand, wrist, and forearm	
4.2	Original and Modified Kleinert	91
4.3	dorsal blocking splint with palmar bar and	02
	four-finger dynamic traction	92
4.4	Controlled passive motion method	93
4.5	Controlled "place-and-hold" motion after	07
	flexor tendon repair protocol	97
5.1	Rupture rate	108
5.2	DIP and PIP flexion deformity	108
5.3	FDS and FDP tendon lag	109
5.4	Adherent scar formation	110
5.5	Patients satisfaction	111
5.6	DASH score	111
5.7	Example of patient from passive group.	112
5.8	Example of patient from active group	112

Randomized Clinical Study Comparing Early Active Rehabilitation Program for Flexor Tendon Repair versus Early Passive Rehabilitation Program Abstract

Restoration of full range of motion of digits and prevention of joint contraction following flexor tendon repair is a challenge. The rehabilitation program evolved from immobilization program to early mobilization techniques. Because of the poor results of the immobilization programs as regard incidence of joint adhesions and contracture, Kleinert et al developed controlled motion protocol based on active extension passive flexion of the injured digit within a dorsal blocking splint.

The good results of early passive mobilization encouraged several authors to think about controlled early active mobilization. Their studies yield that early active mobilization has better tendon motion with less adhesions.

There is lack of the solid evidence as regard the most suitable rehabilitation protocols following flexor tendon repair. This is due to the limited number of studies comparing different rehabilitation protocols. Also the present studies advocate a specific technique with no comparative group. Even the few controlled studies vary in methods of repair and rehabilitation, and outcome assessment.

To our knowledge the only randomized controlled trial comparing early passive rehabilitation with early active rehabilitation is the one done by Trumble et al in 2010. They reached a conclusion that patients on active rehabilitation program had better range of motion with less flexion contractures and greater satisfaction scores than those in a passive rehabilitation protocol. Yet this study was performed upon 4 strand repaired tendons.

We conducted our study comparing early active mobilization protocol "place and hold" with early passive mobilization "Modified Kleinert" after *standard 2 strand modified Kessler repair* in *different* hand zones.

Key words: Flexor tendon, Rehabilitation, flexion deformity, tendon lag.

Introduction

Aim of the Work

Chapter (1) **Anatomy**

Chapter (2) **Diagnosis of Hand Injuries**

Chapter (3) Methods of Repair of Flexor Tendon Injuries

