REPRODUCTIVE AND PRODUCTIVE PERFORMANCE OF BARKI EWES FED NIGELLA SATIVA MEAL UNDER THE NORTH WEST COAST CONDITIONS OF EGYPT

By

EFFAT MORAD MADANY MOHAMEDEN

B.Sc. Agric. Coop. Sci., Higher Inst. Agric. Coop. (2011)

A Thesis Submitted in Partial Fulfillment

of

The Requirements for the Degree of

MASTER OF SCIENCE

in

Agriculture Sciences (Agriculture and Desert Areas Affected by Salinity)

Arid Lands Agricultural Graduate and Research Institute Faculty of Agriculture Ain Shams University

Approval Sheet

REPRODUCTIVE AND PRODUCTIVE PERFORMANCE OF BARKI EWES FED NIGELLA SATIVA MEAL UNDER THE NORTH WEST COAST CONDITIONS OF EGYPT

By

EFFAT MORAD MADANY MOHAMEDEN

B.Sc. Agric. Coop. Sci., Higher Inst. Agric. Coop. (2011)

Thi	is thesis for M. Sc. degree has been approved by:
Dr.	Sobhy M. A. Sallam Prof. of Animal Nutrition, Faculty of Agriculture, Alexandria University
Dr.	Ahmed M. El-Sherbiny Prof. of Animal Physiology, Faculty of Agriculture, Ain Shams University
Dr.	Esmat B. Abdalla Prof. Emeritus of Animal Physiology, Faculty of Agriculture, Ain Shams University

Date of Examination: 4 / 6 / 2016

REPRODUCTIVE AND PRODUCTIVE PERFORMANCE OF BARKI EWES FED NIGELLA SATIVA MEAL UNDER THE NORTH WEST COAST CONDITIONS OF EGYPT

By

EFFAT MORAD MADANY MOHAMEDEN

B.Sc. Agric. Coop. Sci., Higher Inst. Agric. Coop. (2011)

Under the supervision of:

Dr. Esmat Bakri Abdalla

Prof. Emeritus of Animal Physiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Hamdi Abdel-Aziz Salem Gawish

Researcher Prof. Emeritus of Animal Physiology, Animal and Poultry Production Division, Desert Research Center.

Dr. Usama Ahmed El-Behery

Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Effat Morad Madany Mohameden. Reproductive and productive performance of Barki ewes fed on *Nigella sativa* meal under the North West Coast conditions of Egypt. Unpublished M.Sc. Thesis, Department of Agriculture and desert areas affected by salinity, Faculty of Agriculture, Ain Shams University, 2016.

Sixty adult Barki ewes (2.0--3.0 years) old and $38.89 \pm 1.02 \text{ kg}$ average body weight) were used to investigate the effect of feeding *Nigella sativa* meal as an alternative source of protein on the reproductive and productive performance of Barki ewes. Animals were randomly assigned into equal three groups (20 each). The first group (G1) served as control and fed the basal diet contain 20% cotton seed meal and 6% soya bean meal as a source of dietary protein, while the second group (G2) fed diet contain 13.5% of *Nigella sativa* meal (NSM) and 8% soya bean meal as a source of dietary protein. The third group (G3) fed diet contain 25% of NSM as a source of dietary protein. All groups were offered berssem (*Trifolium alexandrinum*) hay ad libitum, and rations were adjusted monthly to cover their requirements during their different physiological status.

Reproductive traits in terms of conception and lambing rates, abortion and stillbirth rates, number of lambs born alive and weaned as well as mortality rate from birth to weaning were measured during this study. Birth and weaning weights as well as body weight changes of ewes were recorded during different physiological stages. Milk yield and composition were also determined. In addition, biochemical, hematological and some immunological parameters as well as progesterone and thyroid hormones were recorded.

Results indicated that conception and lambing rates were insignificantly higher in G1 and G2 compared with G3. While number of

lambs born alive was higher in G2 and G3 than control group (19 and 18 Vs. 17 lambs for G2, G3 and G1 respectively). Birth and weaning weights were significantly higher in G3 followed by G2 compared with control one. Group 3 (G3) scored higher milk production during lactation period (627.29 ml/h/d) then G2 (601.33 ml/h/d) while control group recorded the lowest value (587.33 ml/h/d).

Progesterone profile in the three experimental groups was found to follow the normal pattern reported in the literature. Progesterone levels insignificantly increased in control group than other two groups during pregnancy, especially late pregnancy stage and decreased thereafter to the basal values after parturition.

In conclusion, we can use NSM as an alternative source of dietary protein to improve reproduction and production efficiency of Barki ewes under arid conditions of North Western Coast of Egypt.

Keywords: Reproductive and productive efficiency, Barki ewes, Nigella sativa meal.

ACNOWLEDGMENT

First of all, thanks to **ALLAH**, the most gracious, beneficent and merciful for his induced approval to complete goals and make them possible.

The author heartily wishes to express his sincere and deepest appreciation to **Dr. Essmat Bakry Abdalla**, Professor Emeritus of Animal Physiology, Animal Production Department, Faculty of Agriculture, Ain Shams University for his close supervision, encouragement, constructive criticism, valuable advices and great help in writing and preparation of the manuscript.

Deep thanks are due to **Dr. Hamdi Abdel-Aziz Gawish,**Professor Emeritus of Animal Physiology, Animal and Poultry
Physiology Department, Desert Research Center for his close supervision,
designing the work plan, providing facilities, keen follow up of the work
and helping in writing the manuscript.

The author wishes to express his sincere and deepest appreciation to **Dr. Usama Ahmed El-Behairi,** Professor of Vegetable Crops, Horticulture Department, Faculty of Agriculture, Ain Shams University for his great help during carrying out the present work, guidance and valuable discussion.

Deep thanks are due to **Dr. Ahmed Sobhy El-Hawy,** Researcher of Animal Physiology, Animal and Poultry Physiology Department, Desert Research Center for his close supervision, designing the work plan, providing facilities, keen follow up of the work and helping in writing the manuscript.

Cordial thanks are also extended to **Dr. Hassan El-Shaer** and **Dr. Mohamed Tarek Abd-El-Fatah** for providing facilities and their helps in the progress of this work.

I am very grateful to **Dr. Kamal Mahmoud, Dr. Yousry Shaker, Dr. Ali Saber, Dr. Alla Hamed, Dr. Moharram Foaad, Dr. Salah Abobakr, Dr. Ibrahim Samir and Mohamed Awad** for their encouragement and helps in progress of this work

Special thanks are due to the **staff of Department of Animal Physiology** and my **friends** for the facilities and kind help during the experimental work.

Finally, I want to express special gratefulness to my **late father**. My deepest thanks to my **mother**, my **brother** (**Ahmed**) and my **sister** (**Hadeer**) for their encouragement and moral support during all my life.

CONTENTS

	Page
LIST OF TABLE	iii
LIST OF FIGURES	v
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Chemical composition of <i>Nigella sativa</i> meal	3
2.2. Effect of feeding Nigella sativa meal on reproductive	
parameters	5
2.3. Effect of feeding Nigella sativa meal on ewes and lambs	
weight	7
2.4. Effect of feeding Nigella sativa meal on milk yield and	
composition	9
2.5. Effect of feeding Nigella sativa meal on biochemical	
parameters	11
2.5.1. Total proteins and its fractions	11
2.5.2. Effect on lipid parameters	12
2.5.3. Liver enzymes	14
2.5.4. Kidney function	15
2.5.5. Glucose concentration	16
2.6. Effect of feeding <i>Nigella sativa</i> on blood hormones	17
2.6.1. Thyroid hormones	17
2.6.2. Progesterone hormone	18
2.7. Effect of feeding Nigella sativa on blood minerals	20
2.8. Effect of feeding Nigella sativa on hematological	
parameters	21
2.9. Effect of feeding Nigella sativa on some immunological	
parameters	23
3: MATERIALS AND METHODS	25
3.1. Animals and Managements	25
3.2. Measurements	26

	Page
3.2.1. Reproductive parameters	26
3.2.2. Productive parameters	27
3.2.3. Milk samples	27
3.2.4. Blood samples	27
3.2.5. Blood picture	28
3.3. Chemical composition of feed staffs	28
3.4. Statistical procedure	28
4. RESULTS AND DISCUSSION	30
2.1. Chemical composition of <i>Nigella sativa</i> meal	30
4.2. Effect of feeding Nigella sativa meal on reproductive	31
parameters	
4.3. Effect of feeding Nigella sativa meal on ewes and lambs	22
weight	33
4.4. Effect of feeding Nigella sativa meal on milk yield and	25
composition	35
4.5. Effect of feeding Nigella sativa meal on biochemical	20
parameters	38
4.5.1. Total proteins and its fractions	38
4.5.2. Effect on lipid parameters	36
4.5.2.1. Total lipid	37
4.5.2.2. Serum cholesterol, HDL and LDL	38
4.5.3. Liver enzymes	44
4.5.4. Kidney function	45
4.5.5. Glucose concentration	47
4.6. Effect of feeding <i>Nigella sativa</i> meal on blood hormones	48
4.6.1. Progesterone concentration	48
4.6.2. Thyroid gland activity	50
4.7. Effect of feeding <i>Nigella sativa</i> meal on blood minerals	51
profile	
4.8. Effect of feeding <i>Nigella sativa</i> meal on hematological	54
parameters	

	Page
4.8.1. White blood cells count	55
4.8.2. Red blood cells.	57
4.8.3. Hemoglobin concentration	59
4.8.4. Hematocrit ratio.	60
4.8.5. Wintrobe indices	62
4.9. Effect of feeding Nigella sativa meal on immunological	
parameters	64
4.10. Effect of feeding Nigella sativa meal on total antioxidant	65
5. SUMMARY	68
6. REFERENCES	72
ARABIC SUMMARY	