Immunohistochemical Study of Protein Gene Product 9.5and Single Strand DNA in Generalized and Segmental Vitiligo

Thesis
Submitted for the partial fulfillment of MD degree in
Dermatology, Venereology & Andrology

By Mohamed Hussein Hatem Abdel Rahman Abou Hadeed (MB. B. CH., M.Sc.)

Under supervision of

Prof. Dr. Nader Fouad Ragab

Professor of Dermatology, Venereology & Andrology Faculty of Medicine-Ain Shams University

Prof. Dr. Nehal Mohamed Zu El-Fakkar

Professor of Dermatology, Venereology & Andrology Faculty of Medicine-Ain Shams University

Prof. Dr. Nafissa Mohamed Amin El-Badawy

Professor of Pathology Faculty of Medicine-Ain Shams University

Prof. Dr. Hany Mohamed Ezz El-Din El-Nazer

Professor in Dermatology, Venereology & Andrology Research Department-National Research Center

Prof. Dr. Mahmoud Fawzy Abdel Hamid

Professor of Dermatology, Venereology & Andrology Research Department-National Research Center

> Faculty of Medicine-Ain Shams University 2015

Acknowledgements

First I thank "God" for granting me the power to proceed and to accomplish this work.

I would like to express my endless gratitude and appreciation to **Prof. Dr. Nader Fouad Ragab**, Professor of Dermatology, Venereology & Andrology, Faculty of Medicine-Ain Shams University, for giving me the honor of working under his supervision and providing me a lot of encouragement throughout this work and always.

I do appreciate the kind and active participation of **Prof. Dr. Nafissa Mohamed Amin El-Badawy**, Professor of Pathology, Faculty of Medicine-Ain Shams University.

I would like to acknowledge my profound gratitude to **Prof. Dr. Hany Mohamed Ezz El-Din El-Nazer**, Professor in Dermatology, Venereology & AndrologyResearch Department-National Research Center, for his helpful guidance and kind instructions during all the work in order to come in this form.

My sincere thanks to **Prof. Dr. Nehal Mohamed Zu El-Fakkar,** Assistant professor of Dermatology, Venereology & Andrology, Faculty of Medicine-Ain Shams University, for her cooperation and useful instructions.

Words would fail me in trying to thank **Prof. Dr. Mahmoud Fawzy Abdel Hamid,** Assistant professor of Dermatology, Venereology & AndrologyResearch Department-National Research Centerfor his detailed and constructive comments, and for his important support throughout this work.

I am really grateful to my Mother, Father and Sisters for their support and encouragement.

LIST OF CONTENTS

➤ List of Abbreviations	i
> List of Tables	iii
► List of Figures	iv
> I. Introduction and Aim of the Work	1
> II. Review of Literature	4-
* Chapter A. Vitiligo	4
1- Definition	4
2- Epidemiology	5
3-Precipitating factors	5
4-Overview of melanocytes and melanogenesis	7
5- Pathogenesis of vitiligo	8
6- Genetics of vitiligo	42
7- Clinical features	44
a.Clinical variants	45
b.Clinical classification of vitiligo	46
8- Systemic associations	49
9- Pathology	53
10- Diagnosis and differential diagnosis	58
11- Treatment of vitiligo.	59
* Chapter B. ProteinGene Product 9.5	73
❖ Chapter C. Single Strand DNA	75
> III. Patients and methods.	77
> VI. Results	85
> V. Discussion	105
> VI. Summary	119
➤ VII. Conclusion and recommendations	123
> VIII. References	126
> Arabic summary	

LIST OF ABBREVIATIONS

4-TBP: 4-tertiary butylphenol5-MOP: 5-methoxypsoralen8-methoxypsoralen

AD: Anno Domini

ADCC: Antibody dependant cell mediated cytotoxicity

AISL: Autoimmune susceptibility locus

APC: Antigen presenting cell

Bax: B cell lymphoma-2 associated X protein

BC: Before Christ

BCL2: B cell lymphoma-2

bFGF: basic fibroblast growth factor

C: Complement CAT: Catalase gene

CD: Cluster of differentiation **cDNA:** Complementary DNA

CGRP: Calcitonin gene related peptide

CLA: Cutaneous lymphocyte associated antigen

COMT: Catechol-O-methyl transferase CTLA: Cytotoxic lymphocyte antigen 4

DHICA: 5,6-Dihydroxyindole-2-carboxylic acid

EDTA: Ethylenediaminetetraacetic Acid EGM: Extra cellular granular material

ET Endothelins

FGF: Fibroblast growth factor

 H_2O_2 : Hydrogen peroxide

H&E: Haematoxylin and Eosin

HCV: Hepatitis C virus

HIV: Human immune deficiency virus

HLA: Human leucocytic antigen

ICAM: Intracellular adhesion moleculeIDDM: Insulin dependent diabetes mellitusIKP: Isomorphic Koebner phenomenon

IL: Interleukin INF: Interferon

KDa: Kilo Dalton

KUVA: Khellin plus UVA

LAK: Lymphokine activated killer cell

LC: Langerhans' cells

LSAB: Labeled StreptAvidin Biotin

MAO: Monoamino oxidase

MBEH: Monobenzyl ether of hydroquinone

MCHR: Melanin concentrating hormone receptor

MHC: Major histocompatibility complex

MITF: Microphthalmia-associated transcription factor

MSH: Melanocyte-stimulating hormone

NGF: Nerve growth factor NK: Natural killer cell NPY: Neuro peptide Y

PBS: Phosphate Buffered Saline PGP 9.5: Protein geneproduct 9.5 ROS: Reactive oxygen species

SCF: Stem cell factor

ssDNA: Single stranded DNA

TAP1: Transporter associated with antigen-processing

TCR: T-cell receptor

TGF\beta1: Transforming growth factor β

Th: T helper cell

 TiO_2 : Titanium dioxide

TNF: Tumor necrosis factor

TRP: Tyrosinase related protein

VKHS: Vogt-Koyanagi-Harada syndrome

LIST OF TABLES

Table (1):	Pros and cons for different hypotheses (neuronal, somatic	28
	mosaicism and microvascular skin homing) for segmental	
	vitiligo, and possible causes for melanocyte destruction	
Table (2):	Types of vitiligo	46
Table (3):	Segmental versuss non segmental vitiligo	48
Table (4):	Reported disorders coexisting with vitiligo	52
Table (5):	Description of managed data among study access	85
Table (C).	Description of personal data among study cases.	96
Table (6):	Description and Comparison between Segmental and non	86
	segmental cases as regards personal data	
Table (7):	Relation between disease duration and each of lesional and non lesional PGP9.5 and ssDNA among all vitiligo cases	87
Table (8):	Relation between disease duration and each of lesional and non lesional	87
Table (6).	PGP9.5 and ssDNA among non segmental vitiligo cases	07
Table (9):	Relation between disease duration and each of lesional and non lesional	88
` ,	PGP9.5 and ssDNA among segmental vitiligo cases	
Table (10):	Description of lesional and non lesional PGP9.5 and ssDNA	89
	among study cases	
Table (11):	Comparison between lesional and non lesional PGP9.5 among	89
	segmental vitiligo cases	
Table (12):	Comparison between lesional and non lesional PGP9.5 among	89
	non segmental vitiligo cases	
Table (13):	Comparison between lesional and non lesional ssDNA among	90
	segmental vitiligo cases	
Table (14):	Comparison between lesional and non lesional ssDNA among	90
	non segmental vitiligo cases	
Table (15):	Comparison between lesional segmental cases and controls as	91
	regards PGP9.5 and ssDNA	0.1
Table (16):	Comparison between lesional non segmental cases and controls	91
T 11 (15)	as regards PGP9.5 and ssDNA	02
Table (17):	Comparison between lesional and non lesional PGP9.5 among all	92
T-1-1- (10).	vitiligo cases	02
Table (18):	Comparison between lesional and non lesional ssDNA among all	93
Table (10).	vitiligo cases.	04
Table (19):	Comparison between non lesional non segmental cases and	94
Table (20):	Comparison between non-lesional segmental cases and controls	94
Table (20):	Comparison between non lesional segmental cases and controls	74
	as regards PGP9.5 and ssDNA.	

Table (21):	Comparison between non lesional non segmental cases and controls as regards PGP9.5 and ssDNA	95
Table (22):	Comparison between Segmental and non segmental vitiligo cases as regards lesional PGP9.5.	96
Table (23):	Comparison between Segmental and non segmental vitiligo cases as regards lesional ssDNA	97

LIST OF FIGURES

Figure (1):	Intracellular transformation of tyrosinase into pre-melanin	
	metabolites, and finally into melanin	8
Figure (2):	Differentiation of T helper cell subsets	14
Figure (3):	Cytotoxic T-cells in perilesional skin of activevitiligo	16
Figure (4):	Summary of the possible cellular and humoral immune	21
	mechanisms of vitiligo	
Figure(5):	Different hypotheses for segmental vitiligo	31
Figure (6):	Arguments for destruction of melanocytes by apoptosis	34
Figure (7):	The life cycle of human melanocytes primarily controlled by	35
	four factors, namely cAMP, bFGF, ET-1, and SCF	
Figure (8):	Schematic view of the role of apoptotic keratinocytes in	
	vitiligo	37
Figure (9):	Proposal of a new integrated theory for non-segmental vitiligo.	40
Figure (10):	The three main steps of the LSAB technology	79
Figure (11):	Distribution of patients according to gender	86
Figure (12):	Comparison between lesional and non lesional PGP9.5 among	
	all vitiligo cases	92
Figure (13):	Comparison between lesional and non lesional ssDNA among	
	all vitiligo cases	93
Figure (14):	Comparison between non lesional segmental and non	
	segmental cases and controls as regards PGP9.5	95
Figure (15):	Comparison between non lesional segmental and non	
	segmental cases and controls as regards ssDNA	96
Figure (16):	H&E staining in a lesional segmental vitiligo case (x200)	97
Figure (17):	H&E staining in a lesional segmental vitiligo case (x200)	98
Figure (18):	+2 dermal PGP9.5 positive staining in a lesional segmental	
	vitiligo case (immunohistochemical stain,x400)	98
Figure (19):	+1 dermal PGP9.5 positive staining in a non lesional	
	segmental vitiligo case (immunohistochemical stain,x400)	99
Figure (20):	+2 ssDNA positive apoptotic epidermal cells in a lesional	
	segmental vitiligo case (immunohistochemical stain,x400)	99
Figure (21):	+1 ssDNA positive apoptotic epidermal cells in a non lesional	
	segmental vitiligo case (immunohistochemical stain,x400)	100
Figure (22):	H&E staining in a lesional non segmental vitiligo case (x200)	100
Figure (23):	H&E staining in a non lesional non segmental vitiligo case	
	(x200)	101
Figure (24):	+3 dermal PGP9.5 positive staining in a lesional non	
	segmental vitiligo case (immunohistochemical stain,x400)	101

Figure (25):	+1 dermal PGP9.5 positive staining in a lesional non	
	segmental vitiligo case (immunohistochemical stain,x400)	102
Figure (26):	+3 ssDNA positive apoptotic epidermal cells in a lesional non	
	segmental vitiligo case (immunohistochemical stain,x400)	102
Figure (27):	+1 ssDNA positive apoptotic epidermal cells in a lesional non	
	segmental vitiligo case (immunohistochemical stain,x400)	103
Figure (28):	H&E staining in a control case (x400)	103
Figure (29):	+1 dermal PGP9.5 positive staining in a control case	
	(immunohistochemical stain,x200)	104
Figure (30):	+1 ssDNA positive apoptotic epidermal cells in a control case	
	(immunohistochemical stain,x400)	104

A. INTRODUCTION

Vitiligo is an acquired dermatologic disorder characterized by loss of functioning melanocytes, resulting in depigmentation of the skin. (*Tobin et al.*, 2000; *Solano et al.*, 2006; *Van Geel et al.*, 2014).

The mechanisms underlying the destruction of functioning melanocytes and the absence of melanin in vitiligo lesions remain unclear. Nevertheless, certain theories have been suggested and studied including; the genetic hypothesis, the autoimmune hypothesis, the neural hypothesis (involving neuropeptides, adrenergic and cholinergic neurotransmitters), the apoptotic theory, the viral hypothesis, the self destruction hypothesis (including the significant contribution of oxidative stress through the accumulation of H2O2), and convergence theory (which combines previous theories). (Cucchi et al.,2000; Dell'Anna et al.,2003; Gauthier et al.,2003; Ortonne,2003; Hasse et al.,2004; Schallreuter et al.,2006; Solano et al.,2006).

Developmentally, melanoblasts are derived from the neural crest, and so it is not surprising that an association between neurological disorders and changes in skin pigmentation can often be found. The segmental distribution of vitiligo, and the association of vitiligo with peripheral nerve injury, viral encephalitis, horner's syndrome and diabetic neuropathy, supports the neurological theory in vitiligo (*Al'Abadie et al.*, 1994; *Liu et al.*, 1999).

Protein gene product 9.5 (PGP 9.5) is a general marker for all cutaneous sensory and autonomic nerve fibers. It has been studied in skin biopsies of various dermatologic disorders (*McArthur et al.*,1998; *Omdal et al.*,2002; *Antunes et al.*,2003; *Ebnezer and Daniel*,2004).

Studies of PGP 9.5 in vitiligo have been performed. One study showed a minimal increase in PGP 9.5 positive nerve fibers at the dermoepidermal junction and lower malpighian layers in patients with vitiligo at the periphery of the lesion relative to normal skin (Al'Abadie et al.,1994). Other reported no difference in PGP 9.5 positive nerve fibers between lesional, nonlesional, and normal skin in patients with vitiligo (Liu et al.,1999). However, recently Aroni et al.,2008 detected a statistically significant difference in the number of PGP 9.5-positive nerve fibers/axons in the papillary dermis between the centre and periphery of the lesions of vitiligo (i.e. increased at the center in comparison with the periphery).

A few controversial theories have been studied concerning the role of apoptosis in vitiligo. The lack of evidence for the involvement of this process has been reported in several studies (*Tobin et al.*,2000; *Van den Wijngaard et al.*,2000a). However vitiligo as a manifestation of apoptosis is supported by its histopathological findings, and is particularly evident from the changes at the border between the depigmented and clinically normal (uninvolved) skin (*Kovarik et al.*, 2009).

A monoclonal immunoglobulin M (IgM) antibody was used by *Aroni et al.*, 2008 against single strand DNA (ssDNA), which specifically stains the apoptotic cells and has been applied in vitiligo to differentiate between apoptotic and necrotic cells.

On the basis of dermal PGP 9.5-positive nerve fibers and ssDNA-positive (apoptotic) cells, *Aroni et al.*,2008 concluded that there is a relationship between the autonomic nerve system function and apoptosis, supporting the hypothesis that the destruction of functioning melanocytes in vitiligo could be the end result of different interacting pathogenic mechanism, such as apoptosis and accumulation of neural fibers/axons.

B. AIM OF THE WORK

The aim of this work is to study the possible contribution of either the neural mechanism or apoptotic mechanism or both together in the etiopathogenesis of generalized and segmental vitiligo variants. This was done through immunohistochemical study of PGP9.5 as evidence of neural mechanism and ssDNA as an evidence of apoptotic mechanism in vitiligo.