Comparative evaluation of the bladder cancer antigen and telomerase activity in the detection of primary and recurrent bladder tumor

Thesis

Submitted for partial fulfillment of doctorate degree in Clinical Pathology and Oncology Laboratory Medicine

By

Nevine Fawzy Shafik

M.B.,B.Ch.,M.Sc.

Cairo University

Under Supervision of

Prof.Dr. Prof.Dr.

Fatma Mohamed Nasrat

Professor of
Clinical and Chemical pathology
National Cancer Institute
Cairo University

Abdel Rahman Nabawy Zekry

Professor of Molecular Biology National Cancer Institute Cairo University

Prof.Dr.

Amr Abd EL-Meguid Attia

Professor of Surgery
National Cancer Institute
Cairo University

National Cancer Institute
Cairo University
2009

Acknowledgment

First of all, may all thanks and praise be to God, the most merciful for the unlimited help, blessings, gifts, and care. Without his blessing, this work would have never been existed.

I would like to express my deep and sincere gratitude and appreciation to **Professor Dr**. **Fatma Mohamed Nasrat**, professor of clinical and chemical pathology National Cancer Institute, Cairo University for her kind support and generous guidance both academically and personally, her valuable advices, précised comments, encouragement and constructive remarks were the cornerstone in the initiation and progression of this work. I will always admire her extensive medical knowledge and clinical experience.

No words can ever convey my gratitude to Professor, **Dr. Abd El Rahman Nabawy Zekry**, Professor of molecular biology, National Cancer Institute, Cairo University, for his great help, endless support as well as confidence and interest towards the work from the very beginning.

I would like to thank Professor Dr. Amr Abd El-Meguid Attia, Professor of Surgical Oncology, National Cancer Institute, Cairo University, for his valuable advice and patience throughout the preparation and implementation of this thesis.

I wish to express my deep appreciation to Professor Dr. Maha Saleh Madbolly, Professor of Clinical & Chemical Pathology, National Cancer

Institute, Cairo University, for her kind supervision and practical guidance all through this work.

Thanks to all Professors and staff of the department for their friendly disposition.

I also thank my patients included in this work for their cooperation. May God protect, cure and bless them all with better health and care.

I am greatly indebted to all my family specially my husband for his sincere love, support, patience and great help, and my beautiful kids; who always surround me with love and compassion, my parents for their love and support.

Abstract

Purpose:

The diagnostic efficacy of telomerase activity and urinary cancer bladder antigen was evaluated in a trial to assess their value in the detection of bladder cancer and to compare it to that of routine urine cytology.

Subjects and Methods:

The study included 50 bladder cancer patients diagnosed by cystoscopy and histopathological typing, in addition to 20 benign bladder lesions patients and 20 healthy volunteers as a control group. Thirty three of cancer patients were of grades I & II while 17 were grade III. Twenty six patients were of stages I &II while 24 patients were of stages III & IV. Twenty one patients were papillary superficial and 29 were invasive TCC. Twenty patients had bilharziasis. A single freshly voided urine sample (≈ 100ml) was collected from each patient and control subject and aliquoted for each test. All assays were conducted according to the manufactures guidelines and the results were compared to those of urine cytology.

Results:

The optimal cutoffs for UBC antigen and telomerase activity were calculated by ROC curves were 3.315 ug/l and 0.256 (Ratio) respectively. The level of the UBC antigen were significantly higher in the malignant group compared to the normal control group(P-value <0.001). However, its level was not significantly different between the benign bladder lesions group and the bladder cancer group. The level of telomerase activity was significantly higher in the malignant group compared to either the benign group or normal group (P-value <0.001). The overall sensitivity of UBC, telomerase and cytology was 84.0%, 80.0% and 36.0% respectively. Sensitivity of UBC, telomerase and cytology was 96.9%, 75.9% and 41.4% respectively for invasive and it was 61.9%, 76.19% and 28.57% respectively for papillary. Sensitivity of UBC, telomerase and cytology was

75.75%, 81.81% and 33.33% respectively for grade I and II and it was 100%, 82.4% and 41.2% respectively for grade III Sensitivity of UBC, telomerase and cytology was 73.07%, 80.76% and 30.76% respectively for stage T1 and T2 and it was 95.8%, 83.3% and 41.7% respectively for stage T3 and T4. Sensitivity of UBC, telomerase and cytology was 95%, 80% and 45% respectively for bilharziasis and it was 76.6%, 83.3% and 30% respectively for non bilharziasis. The overall specificity of UBC, telomerase and cytology was 75.0%, 75.0% and 100.0% respectively. Double or triple combinations of the assayed markers with each other or with cytology did not improve the sensitivity over each parameter individually.

Conclusion:

Our data indicate that UBC and telomerase had superior sensitivities compared to voided urine cytology. It can be concluded that UBC and telomerase have enough potential for future clinical use, although UBC showed slightly better diagnostic performance than telomerase regarding the pathological subtypes, grade and stage of bladder cancer.

Keywords: bladder cancer, tumor markers, UBC, telomerase, urine cytology.

CONTENTS

Title	Page
 LIST OF ABBREVIATIONS 	•
• LIST OF TABLES	
LIOT OF FIGURES	
 INTRODUCTION AND AIM OF WORK 	1
 REVIEW OF LITERATURE 	
Chapter I: BLADDER CANCER	4
l) Introduction	4
II) Etiology and Risk factors	6
A) Basic Etiology	
B) Risk Factors	
1- Smoking	
2- Exposure to chemicals	
3- Nutritional habits	
4- Analgesicstract infaction	
5- Persistent urinary tract infection	
III) Pathogenesis	
IV) Pathology	15 15
A) Gross typesB) Histopathological classification of blad	
carcinomas	
1. Epithelial tumor	
a. Carcinoma in situ	
b. Squamous cell carcinoma	
c. Transitional cell carcinoma	
d. Adenocarcinoma	
e. Undifferentiated carcinoma	
Non-epithelial tumor Miscellaneous	
4. Metastatic	
V) Grading of bladder cancer	
VI) Staging	20
TNM clinical classification Stage Grouping	
VII) Laboratory diagnosis of bladder cancer.	
Urinary Cytology	
	· · · · · · · · · · · · · · · · · · ·

•	Bladder Tumor Antigen Test	25
	a. Original BTA test	26
	b. BTA stat and BTA TRAK	
•	Nuclear matrix protein	27
•	Fibrin-fibrinogen degradation product	29
•	Hyaluronic acid and hyaluronidase	
•	Telomerase	
•	Quanticyt karyometry system	32
•	Immunocyt	33
•	Flow cytometry	
•	Cytokeratin	34
	a. Cytokeratin-20 (CK-20)	35
	b. Cytokeratin-18 (CK-18)	
	c. Cytokeratin-19 (CK-19)	
•	Fluorescent in situ hybridization technique	
•	BLCA4	
•	Mucin 7 gene	36
•	Survivin	
•	Minichromosome maintenance (Mcm5)	37
•	Other proposed markers	38
CHAPT	ERII: TELOMERASE	
	I) Introduction	39
	II) Components of telomerase	49
	´ 1. Htr	
	2. hTERT	50
	III) Functional assembly of human telomerase)
	A- RNA Subunit of Telomerase (hTR)	51
	B- Catalytic Subunit of Telomerase	
	(hTERT)	
	C- Telomerase-Associated Proteins	
	IV) Telomerase activity in normal human cells	and in
cand	cer57	
	V) Relation to different malignancies	59
CHAPT	TERIII: CYTOKERATIN	64
SUBJEC	CTS AND METHODS	79
	ΓS	
IVEOUL	ا ن	. 7 1

•	DISCUSSION	.133
•	SUMMARY AND CONCLUSION	.154
•	RECOMMENDATION FOR FUTURE STUDIES	157
•	REFERENCES	158
•	ARABIC SUMMARY	

LIST OF ABBREVIATIONS

A : Absorbance aa : Amino acid

AJCC : American Joint Committee on Cancer ALT : Alternative lengthening of telomeres

AUC : Area under the curve BTA : Bladder Tumor Antigen CD : Cluster of Differentiation

cDNA : Cyclic DNA

CIS : Carcinoma in situ

CK: Cytokeratin

DA : Diagnostic Accuracy
DCIS : Ductal Carcinoma in situ

DIG : Digoxigenin

DNA FCM : DNA flow cytomerty
DNA : Deoxyribonucleic acid
EGF : Epidermal Growth Factor

ELISA : Enzyme linked immunosorbent assay

FDA : Food and Drug Administration FDP : Fibrin degradation product

FISH : Fluorescent in situ hybridization technique

HA : Hemagglutinin HA : Hyaluronic acid HAse : Hyaluronidase

HCC : Hepatocellular carcinoma HMK : High molecular weight keratin

HPV : Human Papilloma Virus HRP : Horseradish peroxidase

hTERC : human Telomere RNA Component

hTERT : human Telomere Reverse Transcriptase

hTR : RNA subunit of telomerase

IS : Internal standard

KDa : Kilo dalton

LMK : Low molecular weight keratin

M : metastasis

Mcm5 : Minichromosome maintenance

m-RNA : Messenger-RNA MTP : Microtitre plate

N : regional lymph node

NCI : National Cancer Institute

NMP-22 : Nuclear Matrix Protein-22 NPV : Negative Predictive Value

nt : Nucleotides p123 : Protein 123 P21 : Protein 21 P53 : Protein 53

PCNSL : Primary central nervous system malignant lymphoma

PPV : Positive Predictive Value PRB : Retinoblastoma pretein

Rb: Retinoblastoma

RCA : Regulators of complement activators

RNA : Ribonucleoprotein acid

ROC curve : Receiver operating characteristic curve

rpm : Revolution per minute RT : Room temperature

RTA : Relative telomerase activity

RT-PCR : Real time-polymerase chain reaction

S. cerevisiae : Saccharomyces cerevisiae SCC : Squamous cell carcinoma

sno RNA :Small nucleolar RNA

T : tumor

TCC : Transitional cell carcinoma TMB : Tetramethyl benzidine

TNM : Tumor-node-metastasis staging system
TRAP : Telomere repeat amplification protocol

UBC : Urinary bladder cancer antigen UICC : Union International Contre Cancer

VUC : Voided urine cytology

WHO : World Health Organization

List of Tables

l'able Page
Table (1): Human telomerase-associated proteins56
Table (2): Types of intermediate filament proteins and distribution65
Table (3): Types and distribution of epithelial keratins70
Table (4): Major patterns of cytokeratin expression in relation to epithelial differentiation
Table (5): Tumor markers and cytology of control group108
Table (6): Pathology, Tumor markers and cytology in benign bladder lesions group
Table (7): Clinicopathological findings of bladder cancer patients group at presentation
Table (8): Tumor markers and cytology of bladder cancer group
Table (9): Correlation between tumor markers110
Table (10): Risk factors in cancer bladder group and the benign bladder lesions group
Table (11): Symptomatology in bladder cancer group and benign bladder lesions group112
Table (12): Relation between tumor markers (UBC and Telomerase) and the risk factors in both benign and malignant groups
Table (13): Relation between tumor markers (UBC and Telomerase) and the symptomatology in both benign and malignant groups114
Table (14): Comparative study of the tumor markers (UBC and telomerase) between control, benign bladder lesion and bladder cancer groups
Table (15): Comparative study of the tumor markers (UBC and telomerase) and pathological features of the bladder cancer patients group

Table Page

Table	e (16): Diagno cancer patien	-		tumor marker	_	gy in bla	adder
Table	e (17): Compa cytology rega		_	stic performa dder cancer		r markers	and
Table	e (18): Compa cytology rega		_	stic performa Ider cancer		markers	and
Table		regarding	the p	ostic performa pathologic	subtype	of bla	
Table	e (20): Sensiti subtypes, gra	-		and cytology ziasis		ent path	ology
Table	abnormal	omerase comb	oined abr	stic performa normal UBC a telomerase	nd cytology	and coml	
Table	e (22): Diagno combinations	•		UBC, Telomer	•	- .	triple

List of figures

Figure	Page
Fig (1): Pathological T stages of carcinoma of the urinary bladder	r21
Fig (2): Schematic representation of telomerase. Telomerase is (hTERC) and catalytic protein (hTERT, yellow) subunits ²	•
Fig (3): Two-step hypothesis of cellular senescence and immorta	lizati42
Fig (4): Barriers to immortalization	44
Fig (5): Schematic representation of the telomere	46
Fig (6) End replication problem	48
Fig (7): Cell adhesion in desmosomes	67
Fig (8): Intermediate filament monomer	71
Fig (9): Assembly of intermediate filaments	72
Fig (10): Mean absorbance of UBC	84
Fig (11): Frequency of some clinical data of Bladder Cancer Grou	p121
Fig (12): Frequency of cytology results in bladder cancer group	121
Fig (13): Scatter diagram showing the correlation bet telomerase	
Fig (14): Frequency of risk factors in cancer bladder group and t lesions group123	_
Fig (15): Frequency of symptoms in bladder cancer group an lesions group12	_
Fig (16): Relation between UBC and the risk factors in both ben groups125	ign and malignant
Fig (17): Relation between Telomerase and the risk factors in malignant groups	

Figure Page

Fig (18): Relation between UBC and the symptomatology in both benign and malignant groups126
Fig (19): Relation between Telomerase and the symptomatology in both benigment malignant groups
Fig (20): Median UBC and pathological features of the bladder cance patients128
Fig (21): Median Telomerase and pathological features of the bladder cance patient128
Fig (22): Diagnostic performance of tumor markers and cytology129
Fig (23): Diagnostic performance of tumor markers and cytology regarding the grade of bladder cancer
Fig (24): Diagnostic performance of tumor markers and cytology regarding the stage of bladder cancer
Fig (25): Diagnostic performance of tumor markers and cytology regarding the pathological subtypes of bladder cancer130
Fig (26): Diagnostic performance of tumor markers and cytology in double combination (both abnormal)131
Fig (27): Diagnostic performance of tumor markers and cytology in triple combination (all abnormal)131
Fig (28): Roc curve analysis for both tumor markers (UBC and Telomerase) and area under the curve (AUC)132

INTRODUCTION AND AIM OF WORK