Design,Organic Synthesis and Biological Evaluation of Novel "3 +1" Mixed Ligands of Technetium-99m Complexes as Receptors Imaging Agents

By

Noha Anwar Bayoumi

Labeled Compound Department, Hot Labs Center
Atomic Energy Authority

To

Faculty of Pharmacy- Ain-Shams University

For

The Degree of M.Sc (Pharmaceutical Chemistry)

Under Supervision

Prof. Dr. Mohamed Abdel Hamid Ismail

Professor of Pharmaceutical Chemistry Dean of Faculty of Pharmacy, Ain-Shams University

Prof. Dr. Khalid Abou Zid Mohamed

Professor of Pharmaceutical Chemistry Faculty of Pharmacy, Ain-Shams University

Prof. Dr. El-Sayed Abd El- Ghany El-Sayed Ahmed

Professor of Nuclear Pharmacy Hot Labs Center, Atomic Energy Authority Vice – Dean Faculty of pharmacy-Sineea University

Phamaceutical Chemistry Department- Faculty of Pharmacy, Ain-Shams University

Acknowledgement

First and foremost praising to my GOD, Allah who led me through this work, sustains me with power and will to do this work.

I would like to express my deep gratitude to **Prof. Dr. Mohamed Abdel Hamid Ismail** Professor of Pharmaceutical Chemistry, Dean of faculty of Pharmacy, AinShams University for his kind supervision, constructive criticism and deep concern in this work.

I would like to express my sincere appreciation to **Prof. Dr. El-Sayed Abd El-Ghany El-Sayed Ahmed** Professor of Nuclear Pharmacy, Hot Labs. Center, Atomic Energy Authority for suggesting the experimental work, revision of the thesis and valuable supervision.

I am profoundly grateful to **Prof. Dr. Khaled Abou-Zid,** Professor of Pharmaceutical Chemistry, faculty of Pharmacy, Ain-Shams University for his time and valuable supervision

I also would like to offer my deep thanks and gratitude to **Dr. Abeer Mohamed Amin**, labeled Compounds Department, Atomic Energy Authority for her support and great effort during the experimental part. I have learned a lot from her guidance in the laboratory and I appreciate her interesting discussion and assistance in writing this thesis.

I would like to express my special thanks to **Prof. Dr. Yehia Abd El-Fattah** professor of organic chemistry, Faculty of Science, Al-Azhar University and **Dr Mohamed Abd El-Rashid**, Department of Chemistry, Faculty of Science, Al-Azhar University for their great effective effortS during the synthesis part of the experimental work.

I am also greatly thankful to **Prof. Dr Nagy Lahzy** the Head of Labeled Compounds Department -Atomic Energy Authority for his kind support and for offering the technical facilities.

I also would like to offer my thanks to my friend **Pharmacist Ghada Attia**, Isotope and Radioactive Generator Department – Atomic Energy Authority for her help.

I would like to express my sincere gratitude to my colleagues in the labeled Compounds Department, Hot Labs, Atomic Energy Authority and all those who have mainly contributed towards the successful completion of this work.

Contents

LIST OF TABLES	Page	i
LIST OF FIGURES		ii
ABSTRACT		V
GENERAL INTRODUCTION		1
1. Nuclear medicine		1
1.1. Radiopharmaceutical		2
1.2. Ideal Radiopharmaceutical		4
1.2.1. Easy Availability		5
1.2.2. Short Effective Half-Life		5
1.2.3. Particle Emission		6
1.2.4. Decay by electron capture or isomeric transition		7
1.2.5. High target-to-non-target activity ratio		7
1.3. Nuclear instruments for radiation detection		8
1.3.1 Gamma camera		8
1.3.2. Single Photon Emission Computed Tomography		8

1.3.3. Positron Emission Tomography	9
1.4. Design of new radiopharmaceuticals	11
2. 99m Tc-Radiopharmaceuticals	13
2.1. Technetium	16
2.1.1. Chemistry of Technetium	16
2.1.2. ^{99m} Tc production from (⁹⁹ Mo- ^{99m} Tc) generator	17
2.1.3. Reduction of ^{99m} TcO- ₄	20
2.2. Methods of ^{99m} Tc labeling	21
2.3. ^{99m} Tc-radiopharmaceutical kits	22
2.3.1. ^{99m} Tc-Phosphonate and Phosphate	23
2.3.2 ^{99m} Tc-Tetrofosmin (Myoview)	25
2.3.3 ^{99m} Tc-Iminodiacetic acid derivatives	26
2.3.4. ^{99m} Tc-Pentetate (DTPA)	28
2.3.5. ^{99m} Tc-Mercapto acetylglycylglycylglycine (MAG3)	28
2.3.6. ^{99m} Tc-Hexamethyl propylene amine oxime (Ceretec)	29
2.3.7. ^{99m} Tc-Ethyl cysteinate dimer (Neurolite)	31

2.4.	^{99m} Tc- Radiopharmaceutical for brain imaging	33
2.4.1.	The (3+1) Technique in brain imaging	35
Part	I	
	Preparation of Gabapentin Oxotechnetium complex of	of general
	formula 99mTcO[NN(R)N][N] as brain imag	ing agent
I.1.	Introduction	38
I.1.1.	Gabapentin and its mechanism of action as brain	
	target drug	38
·	esis of quinazoline derivative as tridentate I.2. gand of general formula (NNN)	46
I.2.1.	Experiment	46
I.2.1.1	. Synthesis of 6-iodo-3-amino-2-methylquinazolin-4(3H)-ones	
I.2.1.2.	Synthesis of 6-iodo-3-(N-acylamine)-2-methylquinazolin-	46
	4(3H)-ones	47
I.2.1.3.	Synthesis of 2-imino-thiazolidinone derivative of 4(3H)-	47
	quinazolinone (tridentate ligand) (<u>c</u>)	
I.2.2.	Spectral data of product (<u>c</u>)	48

I.3.	Radiolabeling	52
I.3.1.	Experiment	52
I.3.1.1.	Material	52
I.3.1.1.1.	Chemicals	52
I.3.1.1.2.	Solvent	53
I.3.1.1.3.	Bacterial and fungal testing media	53
I.3.1.2.	Equipment	53
I.3.1.3.	Animals	54
I.3.1.4.	Radioactive material	55
I.3.1.5.	Preparations	55
I.3.1.5.1.	Preparation of stock solution of Stannous	
	chloride dihydrate (SnCl ₂ .2H ₂ O)	55
I.3.1.5.2.	Preparation of 0.9 % sterile sodium chloride solution	55
I.3.1.5.3.	Preparation of buffers	56
I.3.1.5.4.	Preparation of stock solution of monodentate	58
	ligand (Gabapentin)	
I.3.1	1.5.5. Preparation of stock solution of quinazoline	
	tridentate ligand (NNN)	58

I.3.1.6. 99	^{9m} Tc labelling of Gabapentin using (3+1)	
	technique and quinazoline as tridentate ligand	58
I.3.1.6.1.	Method of labeling	58
I.3.1.6.2.	Determination of the radiochemical purity of	
	^{99m} Tc-complex A	59
I.3.1.7.	Quality control of ^{99m} Tc-Complex A	61
I.3.1.8.	Biodistribution studies of 99mTc-Complex A	62
I.3.2.	Results and discussion	63
I.3.2.1	Factors affecting the radiochemical yield of the	
	labeling	64
I.3.2.1.2.	Effect of the reaction time of the reaction system	64
I.3.2.1.3.	Effect of pH of the reaction system	65
I.3.2.1.4.	Effect of the temperature of the reaction system	66
I.3.2.2.	In-vitro stability of 99m Tc-complex A	67
I.3.2.3.	Determination of partition coefficient for	
	^{99m} Tc complex A	67
I.3.2.4.	HPLC analysis of ^{99m} Tc-complex A	68
I.3.2.5.	Quality Control of 99mTc-complex A	69

I.3.2.6.	Biodistrbution studies of 99mTc-complex A	70
	Conclusion	72
Part II:		
I	Preparation of Gabapentin Oxotechnetium comple formula 99m TcO[NS(R)N][N] as brain im	_
Synthesis	of Thioamide derivative as a tridentate II.1.	
lig	and of general formula NSN	7 3
II.1.1.	Experiment	73
	Synthesis of N-(4-Chlorophenyl)- 2-imino-2H-	
Chromene	-3- Carbothioamide (tridentate ligand)	73
II.1.2. Spe	ctral data of the Carbothioamide product	74
II.2.	Radiolabeling	78
II.2.1.	Experiment	78
II.2.1.1.	Material	78
II.2.1.1.1.	Chemicals	78
II.2.1.1.2.	Solvent	78
II.2.1.1.3.	Bacterial and fungal testing	78

II.2.1.2.	Equipment	78
II.2.1.3.	Animals	78
II.2.1. 4.	Radioactive material	79
II.2.1.5.	Preparations	79
II.2.1.5.1.	Preparation of stock solution of SnCl ₂ . 2H ₂ O	79
II.2.1.5.2.	Preparation of sterile sodium chloride solution	79
II.2.1.5.3.	Preparation of pertechnetate 99mTcO-4	79
II.2.1.5.4.	Preparation of stock solution of monodentate ligand (Gabapentin)	79
II.2.1.5.5.	Preparation of stock solution of thioamide	
	tridentate ligand(NSN)	81
II.2.1.6.	Technetium-99m labeling of Gabapentin using	
	(3+1) technique and thioamide as tridentate ligand	80
II.2.1.6.1.	Method of labelling	80
II.2.1.	6.2. Determination of the radiochemical purity of Tc-Complex B	80
II.2.1.7.	Quality Control of 99mTc-complex B	80
II.2.1.8.	Biodistribution studies of 99mTc-complex B	81

II.2.2.	Results and Discussion	81
II.2.2.1.	Factors affecting the radiochemical yield	82
II.2.2.1.1.	Effect of the reaction time of the reaction system	82
II.2.2.1.2.	Effect of pH of the reaction system	84
II.2.2.1.3.	Effect of the temperature of the reaction system	85
II.2.2.2.	The in-vitro stability of 99m Tc-complex B	86
II.2.2.3	B. Determination of partition coefficient for ^{99m} Tc complex B	86
II.2.2.4.	HPLC analysis of 99m Tc-complex B	87
II.2.2.5.	Quality Control of 99mTc-complex B	88
II.2.2.6.	Biodistrbution studies of 99m Tc-complex B	88
	Conclusion	91
	REFERENCES	92
	ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Examples of some radiopharmaceuticals used as therapeutic agents	3
2	Examples of some radiopharmaceuticals used as diagnostic agents	4
3	Characteristics of the eluted pertechnetate solution	57
4	In-vitro stability of ^{99m} Tc-complex A at room temperature (25 °C)	68
5	Biodistribution pattern of 99m Tc-complex A in normal mice at different time intervals	72
6	In-vitro stability of ^{99m} Tc-complex B at room temperature (25 °C)	86
7	Biodistribution pattern of ^{99m} Tc-complex B in normal mice at different Time intervals	90

Figu	re	Page
1	Gamma camera	10
2	Schematic diagram depicting the operation of a gamma camera	10
3	Decay scheme of parent ⁹⁹ Mo to stable ⁹⁹ Ru	19
4	Components of the ⁹⁹ MO - ^{99m} TC generator system	19
5	Schematic diagram represent method of technetium - 99m incorporation in	
	final product	22
6	Molecular structures of different phosphate and phosphonate compounds	
	used in bone imaging	25
7	Molecular structures of different IDA derivatives and their 99m Tc complexes	27
8	Molecular structures of ^{99m} Tc-labeled complexes. A: Tc-HMPAO. B: Tc-	32
	Tetrofosm C: Tc-MAG3. D: Tc-ECD.	
9	Examples of (3+1) mixed ligands for 5HT _{1A} imaging	37
10	Chemical structures of some GABA receptor agonists	40
11	Chemical structures of some GABA receptor antagonists	41
12	Viewing the GABA receptor from the extracellular space, the orientation	42

12	Viewing the GABA receptor from the extracellular space, the orientation	42
	of thesubunits within the pentamer together with the location of the	
	benzodiazepine (Bz) and low affinity GABA sites	
13	IR spectrum of quinazoline tridentate ligand	49
14	¹ H-NMR spectrum of quinazoline tridentate ligand	50
15	Mass spectrum of quinazoline tridentate ligand	51
16	Chemical structure of ^{99m} Tc-complex A	63
17	Effect of reaction time on the percent labeling yield of ^{99m} Tc-complex A	64
	at 70°C	
18	Variation of the percent labeling yield of 99m Tc-complex A as a	65
	function of pH of the reaction mixture	
19	Effect of the temperature of the reaction on the percent labeling yield of	
	99m Tc-complex A	66
20	HPLC radiochromatogram of ^{99m} Tc complex A	68
21	IR spectrum of thioamide tridentate ligand	75
22	¹ H-NMR spectrum of thioamide tridentate ligand	76
23	Mass spectrum of thioamide tridentate ligand	77

24	Chemical structure of ^{99m} Tc-complex B	82
25	Effect of reaction time on the percent labeling yield of 99m Tc-complex B	83
	at 70°C	
26	Variation of the percent labeling yield of 99m Tc-complex B as a	84
	function of pH of the reaction mixture	
27	Effect of the temperature of the reaction on the percent labeling yield of	85
	^{99m} Tc-complex B	
28	HPLC radiochromatogram of ^{99m} Tc complex B	87