

Recent Trends in the Management of Deep Venous Thrombosis in Cancer Patients

Essay

Submitted for Partial Fulfillment of Master Degree
In General Surgery

By

Khaled Waheeb Mohamed Behairy

M.B.B.ch.

Under Supervision of

Prof. Dr/ Ahmed Alaa Eldin Salman

Professor of General Surgery Faculty of Medicine - Ain Shams University

Dr/ Ahmed Aly Khalil

Lecturer of General Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة التوبة الآية (١٠٥)

Aeknowledgment (

- All praise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.
- I would like to express my deepest gratitude and sincere appreciation to Prof. Dr. Ahmed Alaa Eldin Professor of General Surgery, Faculty of Medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.
- I am also grateful to Dr. Ahmed Aly Khalil Lecturer of General Surgery, Faculty of Medicine, Ain Shams University, who freely gave his time, effort and experience along with continuous guidance throughout this work.

Mhaled Waheeb Behairy

Contents

S	ubjects Page
•	List of AbbreviationsI
•	List of TablesV
•	List of FiguresVII
•	List of DiagramVIII
•	List of BoxIX
•	Introduction1
•	Aim of the work
•	Review of Literature
	- Chapter (1): Epidemiology, Pathophysiology and
	Risk Factors of Deep Venous Thrombosis
	in Malignancy6
	- Chapter (2): Diagnosis of Deep Vein Thrombosis and
	its Complications (VTE)48
	- Chapter (3): Prophylaxis against Deep Venous
	Thrombosis in cancer Patient74
	- Chapter (4): Treatment of Deep Venous Thrombosis
	and Its Complications105
•	Summary 161
•	References
•	Arabic summary

List of Abbreviations

ACCP: American College of Chest Physicians

AIOM: Italian association of medical oncology

AIS: Ischemic stroke

APL : Autoimmune phenomena lupus

APTT: Partial thromboplastin time

aPTT : Activated partial thromboplastin time

ASCO: American Society of Clinical Oncolog

BMI : Body mass index

CDT : Catheter-directed thrombolytic therapy

c-MET : MET proto-oncogene

CP : Cancer procoagulant

CVC : Central venous catheter

DVT : Deep vein thrombosis

EC : Endothelial cells

EMS : Electrical muscle stimulation

EP : E-series prostaglandin receptors

E List of Aberrations &

ESAs : Erythropoiesis-stimulating agents

ESMO: European Society of Medical Oncology

FDA : Food and Drug Administration

GCS : Graduated compression stockings

HCC: Hepatocellular carcinoma

HGF: Hepatocyte growth factor

HIT : Heparin-induced thrombocytopenia

INCa : Institut National du Cancer

INR : International normalised ratio

IPC : Intermittent pneumatic compression

ISTH : Society Thrombosis and Haemostasis

IVC : Inferior vena cava

LMW : Low molecular weight

LMWH: Low molecular weight Heparin

MI : Myocardial infarction

MR : Magnetic resonance

MRA : Magnetic resonance angiography

E List of Aberrations &

NCCN: National Cancer Comprehensive Network

NOACs: New oral anticoagulants

PAR-1: Protease-activated receptors

PE : Pulmonary embolism

PGE2 : Prostaglandin E2

PNH : Paroxysmal nocturnal haemoglobinuria

PS: Platelet phosphatidylserine

PT : Prothrombin time

PTS : Post-thrombotic syndrome

QoL : Quality of life

TF: Tissue factor

TFMP: TF-bearing microparticles

TFPI: Tissue factory pathway inhibitor

t-PA : Tissue-type plasminogen activator

UFH : Unfractionated heparin

u-PA : Urokinase-type plasminogen activator

V/Q : Ventilation-perfusion

🕏 List of Aberrations 🗷

VEGFR: Factor receptor

VKA: Vitamin K antagonist

VTE : Venous thromboembolism

ZPI : Protein Z-protein Z dependent protease

inhibitor

List of Tables

Table	Title	Page
1	Regulatory proteins of the coagulation	22
	cascade, site of expression and substrates	
	upon which they act.	
2	Hypercoagulable states.	25
3	Changes in haemostasis due to	29
	malignancy.	
4	Illustrates possible mechanisms of VTE	33
	depending on chemotherapy drug.	
5	Risk Factors Observed in 1231	38
	Consecutive Patients Treated for Acute	
	DVT and/or PE.	
6	Risk factors for VTE in cancer patients.	40
7	Clinical Model for Predicting Pretest	53
	Probability for Deep-Vein Thrombosis.	
8	Wells Clinical Deep Vein Thrombosis	55
	Model.	
9	Wells clinical pulmonary embolism	68
	model.	
10	Revised Geneva Score Pulmonary	69
	Embolism Model (Simplified version).	
11	Predictive model for VTE.	79

🕏 List of Tables 🗷

Table	Title	Page
12	Recommended anticoagulant regimens	88
	for venous thromboembolism prophylaxis and treatment in patients with cancer.	
13	International treatment guidelines for the	116
	treatment of cancer-associated VTE.	

List of Figures

Fig.	Title	Page
1	Rates of vte by cancer type	9
2	Table from Wun and White comparision of	10
	the incidence of vte based on cancer stage	
	and rate of VTE.	
3	Thrombogenic and antithrombogenic	12
	components.	
4	Clotting cascade modle diagram.	16
5	The three stages of coagulation.	18
6	Illustrates the contribution of different	32
	agents involved in the pathophysiology.	
7	Diagnosis of DVT/PE.	49
8	Filtre placement and location.	135
9	Ballon diltation of iliac veins and IVC.	144
10	Dose adjustment of anticoagulant in patients	150
	with renal impairment.	

List of Diagram

No	Title	Page
1	The proportion of patients with clinically	37
	suspected deep vein thrombosis in whom the	
	diagnosis was confirmed by objective testing	
	increases with the number of risk factors.	

List of Box

No	Title	Page
1	Methods of prophylaxis against DVT in hospital inpatients	75
	nospital inpatients	

Introduction

The association between cancer and thrombosis has been known since at least the 19th century. Cancer-associated venous thromboembolism (VTE) has significant clinical consequences for patients. Thrombo embolism is a leading cause of death in cancer patients and cancer patients who develop VTE have a significantly worse survival (*Alok A. Khorana et al.*, 2007).

Venous manifestations of cancer-associated thrombosis include deep vein thrombosis (DVT) and pulmonary embolism (PE), as well as visceral or splanchnic vein thrombosis, together described as VTE (*Khorana*, 2012).

Cancer continues to pose a costly and growing international threat toward modern day society. Among its many direct and indirect complications is its role as a major risk factor for venous thromboembolism (VTE), discovered in a fifth of all cancer patients and as many as half on postmortem examination (*Gao et al.*, 2004).

It is well established that cancer patients are at an increased risk of venous thromboembolism (VTE). In fact, the presence of malignancy increases the risk of (VTE) by a

factor of 4 to 6, and large population-based studies show that the incidence of vte is on the rise (*Stein et al.*, 2006).

Understanding underlying epidemiology, pathophysiology and natural history in deep venous thrombosis is essential in guiding appropriate prophylaxis, diagnosis and treatment. Deep venous thrombosis is usually silent in nature in most of hospitalized patients and usually presented by nonspecific symptoms and signs (*Natasha Mathias et al.*, 2016).

In1856 agerman pathologist Rudolf Virchow postulated the interplay of three processes resulting in venous thrombosis known as Virchow triads these triads are description for the components of therisk factors of deep venous thrombosis which include abnormalities of: thrombosis, abnormalities of blood flow and vascular injury remain applicable today (*Christina et al.*, 2013).

Historically, in 1823, the French physician Jean-Baptiste Bouillaud published what appears to be the first report of an association between cancer and thrombosis. In 1865, another French physician Armand Trousseau reported an association between gastric cancer and venous thrombosis almost 150 years ago, yet its exact pathophysiology remains poorly understood. These reports