حراسة مقارنة بين استئمال الغضروف العنقي من الأمام مع التمام فقاري و الاستبحال الكلى للغضروف في علاج تآكل الغضروف العنقيي

توطئة للحصول على درجة الدكتوراه فنى جراحة المخ والأعصاب مقدمه من الطبيب

تامر محمد رياض المنصوري

بكالوريس الطبع والجراحة-ماجستير الجراحة العامة كلية الطبع - جامعة عين شمس

تدته إشراف

الأستاذ الدكتور/ عُلاء الدين عُبِد المي

أستاذ جراحة المخ والأعصاب كلية الطبع جامعة عين شمس

الدكتور/ كانا نانالينجمام

استشاری جراحة المح والأعصاب مستشفی سالفورد الملکی، مانشستر، انجلترا

الأستاذ الدكتور/ عمر يوسهم مماد

أستاذ جراحة المخ والأعصاب كلية الطب جامعة عين شمس

الدكتور/ أيمن عبد الرؤوف الشاذلي

أستاذ م. جراحة المخ والأعصاب كلية الطح جامعة عين شمس

Comparative study between anterior cervical discectomy and fusion versus disc replacement in the management of degenerative cervical disc disease

Thesis

Submitted for partial fulfillment of M.D.in Neurosurgery

By

Tamer Mohamed Reyad El-Mansoury

(M.B.B.Ch., M.Sc.)

Supervised by

Professor Dr. Alaa El-Din Abd El-Hay

Professor of Neurosurgery Faculty of medicine Ain Shams University

Dr. Kanna Gnanalingham

Consultant of neurosurgery Salford royal hospital, Manchester, England

Professor Dr. Omar Youssef Hammad

Professor of Neurosurgery Faculty of medicine Ain Shams University

Dr. Ayman Abdel Raouf El-Shazly

Assistant Professor of Neurosurgery Faculty of medicine Ain Shams University

Acknowledgment

First and foremost, thanks to God, the most beneficent and most merciful.

I would like to express my deepest gratitude to **Professor Dr.**Alaa El-Din Abd El-Hay, Professor of Neurosurgery - Ain Shams

University, who gave me all his generous support to help me to accomplish this work.

Special thanks to **Dr. Kanna Gnanalingham**, Consultant of neurosurgery, Salford royal hospital-Manchester-England, as without his help, support and cooperation this work would never have seen light.

Many thanks to **Professor Dr. Omar Youssef Hammad**, Professor of Neurosurgery - Ain Shams University, for his patience, valuable suggestions and useful criticism, whose appreciated efforts made this work more valuable.

I would also like to thank **Dr. Ayman Abdel Raouf El-Shazly**, Assistant Prof. of Neurosurgery - Ain Shams University, for supervising this work, giving me his very valuable support, enthusiastic encouragement and thorough review of this work.

Last, but not least, my thanks to all my colleagues for their cooperative spirit and help.

Contents

-Introduction and Aim of workp.1
-Review of literaturep.3
-Patients and Methodsp.96
-Resultsp.114
-Illustrative casesp.135
-Discussionp.164
-Summary & conclusionp.175
-Referencesp.178
-Arabic Summary.

List of figures

No	Figure	Page
1.	Lower cervical vertebrae	3
2.	Microsurgical anatomy and histology of the PLL	7
3.	Sketches of the structure of a cervical intervertebral disc	11
4.	Musculature of the cervical spine	12
5.	Anterior view of the right RLN	15
6.	The intertransverse space and its contents	16
7.	Arterial supply of the spinal cord	18
8.	Horizontal section of a normal intervertebral disc	26
9.	Cranial aspect of a cervical vertebra, showing articular facets	29
10.	A diagram of Spurling's sign	36
11.	Cervical dermatomes	39
12.	Lateral radiograph depicting spondylosis	47
13.	Axial cervical CT scan	48
14.	Mid-Sagittal T2-weighted image of the cervical spine	50
15.	Axial T2-weighted image of the cervical spine	50
16.	Sagittal view of the operative site after discectomy	60
17.	The thoracic duct may be encountered during the	68

	lower left-sided approach	
18.	The right recurrent laryngeal nerve crosses the surgical field	70
19.	Osteoconductive coating of disc prosthesis	83
20.	The Bryan cervical disc prosthesis	86
21.	The Prestige cervical disc prosthesis	88
22.	The prodisc-C cervical disc replacement device	89
23.	The cervicore disc replacement device	90
24.	The PCM artificial cervical disc	91
25.	The DISCOVER Artificial Cervical Disc	92
26.	Two-year follow-up x-ray study showing Progressive kyphosis	94
27.	Two cases of Bryan disc with reformation of osteopyhtes	95
28.	Assessment of global range of motion	101
29.	The DISCOVER Artificial Cervical Disc	102
30.	The posterior edge of the prosthesis	103
31.	The end plates of the DISCOVER prosthesis	104
32.	Midline confirmation and Placement of the midline marker	106
33.	(A) the double-barrel guide and insertion of distraction pins.(B)AP and lat. Fluoroscopic image showing position of distraction pins	107
34.	Discectomy and endplate preparation	108

35.	Rasps used for endplate preparation	109
36.	Footprint sizing gauge	109
37.	DISCOVER Disc trial	110
38.	Trial under fluoroscopy	110
39.	Distraction across the disc space during implant insertion	111
40.	AP and lat fluoroscopy showing final implant position	111
41.	Age distribution in fusion and artificial disc groups	115
42.	Sex distribution in treatment groups	116
43.	Positive past medical history in treatment groups	118
44.	Smoking status in treatment groups	118
45.	Distribution of radiculopathy in surgical groups	120
46.	Distribution of myelopathy in surgical groups	120
47.	Distribution of radiculomyelopathy in surgical groups	121
48.	Distribution of pre-operative neck pain in surgical groups	122
49.	Distribution of pre-operative arm pain in surgical groups	122
50.	Distribution of different operated levels in the whole group.	124
51.	Comparing pre- and post-operative neck pain in surgical groups	129
52.	Comparing pre- and post-operative arm pain in surgical group	130

53.	Complications in surgical groups	131
54.	Patient's satisfaction index	132
55.	Odom's scale	133
56.	(Case1) Preoperative Sagittal T2 image MRI showing prolapsed C5-6 disc	136
57.	(Case1) Preoperative Axial T2 image MRI through C5-6 disc	136
58.	(Case1) preoperative X-ray	137
59.	(Case1) 1 st day postoperative X-ray	138
60.	(Case1) 3months post-operative X-ray	139
61.	(Case1) 6months post-operative X-ray	140
62.	(Case1) 1 year post-operative X-ray	141
63.	(Case1) 1 year post-operative Sagittal & axial T2 image MRI	142
64.	(Case1) 18 months post-operative X-ray	142
65.	(Case1) 2 years post-operative X-ray	143
66.	(Case2) Preoperative Sagittal T2 image MRI showing prolapsed C4-5 disc	145
67.	(Case2) Preoperative Axial T2 image MRI through C4-5 disc	146
68.	(Case2) preoperative X-ray	146
69.	(Case2) preoperative X-ray	147
70.	(Case2) 1 st day postoperative X-ray	147
71.	(Case2) 3 months post-operative X-ray	148
72.	(Case2) 6 months post-operative X-ray	149
73.	(Case2) 6 months postoperative CT scan	150

	cervical spine	
74.	(Case2) 6 months' post-operative Sagittal & axial T2 image MRI	151
75.	(Case2) 1 st day postoperative X-ray following fusion surgery	151
76.	(Case2) 3 months post-operative X-ray (post fusion)	152
77.	(Case2) 3 months post-operative (post fusion) Sagittal & axial T2 image MRI	153
78.	(Case2) 6 months post-operative X-ray (post fusion)	154
79.	(Case2) 18 months post-operative X-ray (post fusion)	155
80.	(Case3) Preoperative Sagittal T2 image MRI showing prolapsed C5-6 disc.	157
81.	(Case3) Preoperative Axial T2 image MRI through C5-6 disc showing left sided disc prolapsed	157
82.	(Case3) preoperative X-ray	158
83.	(Case3) 1 st day postoperative X-ray	159
84.	(Case3) 3 months post-operative X-ray	160
85.	(Case3) 6 months post-operative X-ray	161
86.	(Case3) 1 year post-operative X-ray	162
87.	(Case3) 1 year post-operative Sagittal & axial T2 image MRI	163
88.	(Case3) 2 years post-operative X-ray	163

List of tables

No	Table	Page
1.	Ranges of motion of different cervical levels	21
2.	Clinical Examination for Cervical Radiculopathy	38
3.	Japanese Orthopedic Association classification of myelopathy	44
4.	Age distribution in treatment groups	115
5.	Sex distribution in treatment groups	116
6.	Patients' past medical history	117
7.	Patients' clinical features	119
8.	Preoperative neck and arm VAS	121
9.	Patients' baseline radiological data	123
10.	Duration of operations in minute	125
11.	Duration of hospital stay	125
12.	Number of operations in both groups	125
13.	Duration of follow-up	126
14.	VAS neck and arm at 12 months	127
15.	Change in VAS in both groups	128
16.	Mean decrease in VAS neck	129
17.	Mean decrease in VAS arm	130
18.	Complications in both groups	131
19.	Patient satisfaction index	132

20.	Functional outcome (Odom's scale)	133
21.	Pre and post operative global range of movement in both groups	134
22.	Surgical guidelines in similar studies	169
23.	Clinical outcome in similar studies	171

Introduction

Cervical myelopathy and spinal cord compression caused by spondylotic disease or acute disc herniation is a common spinal disorder that is the subject of controversy over the role and timing of surgical intervention as well as the optimal treatment. (1)

Since the first description of the cervical anterior discectomy with fusion by Cloward and Smith in 1958 respectively in 1955, and the cervical anterior discectomy without fusion in 1960 by Hirsch a debate is started which of both methods is the best. While this discussion is still not closed, the advent of the cervical disc prosthesis has contributed to extra confusion. Instead of two possibilities, nowadays three possible treatments concur with each other: cervical anterior discectomy without implantation of any structure (CAD), cervical anterior discectomy with fusion (CADF), and finally, cervical discectomy with implantation of a disc prosthesis (CADP). (2)

In the absence of arthrodesis, kyphotic deformity is always a feared complication. (1)

Nowadays anterior cervical discectomy and fusion (ACDF) may be considered the standard procedure for treatment of degenerative disc disease of the cervical spine. However, there is evidence that ACDF may result in progressive degeneration of the adjacent segments. (3)

Twenty-five percent of patients undergoing cervical fusion will have new onset of symptoms within 10 years of that fusion. Other reports have helped to shed light on the recurrence of neurological symptoms and degenerative changes adjacent to fused cervical levels. Segments adjacent to a fusion may have an increased range of motion and increased intradiscal pressures. (4)

Total intervertebral disc replacement (TDR) is designed to preserve motion, avoid limitations of fusion, and allow patients to quickly return to routine activities. The primary goals of the procedure in the cervical spine are to restore disc height and segmental motion after removing local pathology. A secondary intention is the preservation of normal motion at adjacent cervical levels, which may be theorized to prevent later adjacent level degeneration. It avoids the morbidity of bone graft harvest it also avoids complications such as pseudarthrosis, issues caused by anterior cervical plating, and cervical immobilization side effects. (4)

Aim of the work

The aim of this study is to compare the efficacy and outcome of both anterior cervical discectomy and fusion versus disc replacement in the management of degenerative cervical disc disease.

I-Anatomy

Cervical vertebrae:

The cervical spine consists of three atypical and four typical cervical vertebrae. Typical cervical vertebrae, C-3 to C-6, include a vertebral body, two pedicles, two lateral masses, two laminae, and a bifid spinous process. The seventh cervical vertebra is slightly different in it has a transitional form, it has a larger spinous process that is not bifid. Atypical vertebrae include the atlas (C1), the axis (C2), and the 7th cervical vertebra. (5)

Because the cervical vertebrae bear the least weight, their bodies are relatively small and thin with respect to the size of the vertebral arch and vertebral foramen. In addition their diameter is greater transversely than in the anteroposterior diameter. ⁽⁶⁾

The lateral edges of the superior surface of each body are sharply turned upward to form the uncinate processes that are characteristic of the cervical region.

However, the most obvious diagnostic feature of the cervical vertebrae is the transverse foramina that perforate the transverse processes and transmit the vertebral arteries. The anterior part of the transverse processes represents fused costal elements that arise from the sides of the body the lateral extremities of the transverse processes bear two projections, the anterior and posterior tubercles. The former serve as origins of anterior cervical muscles; the latter provide both origins and insertions for posterior cervical muscles. ⁽⁶⁾