

Assessment and mitigation of seismic pounding between adjacent buildings

By

Mohamed Raafat Hashem Refay

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Assessment and mitigation of seismic pounding between adjacent buildings

By

Mohamed Raafat Hashem Refay

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Adel Yehia Akl

Professor of Structural Analysis and Mechanics

Structural Engineering Department

Faculty of Engineering, Cairo University

Dr. Nasser Zaki Ahmed Abo El Kasem

Assistant Professor of Structures

Civil Engineering Department

Faculty of Engineering, Beni-Suef University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Assessment and mitigation of seismic pounding between adjacent buildings

By

Mohamed Raafat Hashem Refay

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

Approved by the	
Examining committee	
Prof. Dr. Adel Yehia Akl	(Thesis Main Advisor)
Professor of Structural Analysis and Mechanics	
Faculty of Engineering, Cairo University	
Prof. Dr. Sherif Ahmed Mourad	(Internal Examiner)
Professor of Steel Structures and Bridges	
Faculty of Engineering, Cairo University	
Prof. Dr. Othman Elsaid Shallan	(External Examiner)
Professor of Structural Analysis and Mechanics	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Faculty of Engineering, Zagazig University

Engineer: Mohamed Raafat Hashem Refay

Date of Birth: 14 / 3 / 1992

Nationality: Egyptian

E-mail: Lraafat33@gmail.com

Phone.: 01063035638

Address: 364 tanta street Hadayek-El-Kobba, cairo

Registration Date: 1/3/2014

Awarding Date: / /2018

Degree: Master of Science

Department: Structural Engineering

Supervisors:

Prof. Dr. Adel Yehia Akl

Dr. Nasser Zaki Ahmed Abo El Kasem

(Assistant Professor of Structures Faculty of Engineering Beni-Suef University)

Examiners:

Prof. Dr. Adel Yehia Akl (Thesis Main Advisor)

Prof. Dr. Sherif Ahmed Mourad (Internal Examiner)

Prof. Dr. Othman Elsaid Shallan (External Examiner)

(Professor of Structural Analysis Faculty of Engineering, Zagazig University)

Title of Thesis:

Assessment and mitigation of seismic pounding between adjacent buildings.

Key Words: Reinforced concrete structures, seismic loads, pounding force, gap element, time history.

Summary:

This study is mainly concerned with the calculation of the pounding force resulting from the collision of the adjacent buildings under the seismic loads and calculating the sufficient separation distance between them. The considered design parameters include: the separation distance, dynamic characteristic of the buildings (stiffness and mass). A technique for seismic pounding mitigation based on locally connecting the adjacent frames at various floors is also proposed and evaluated in this thesis.

ACKNOWLEDGMENTS

First of all, I would like to thank ALLAH for giving me all beautiful things in my life

and for helping me to complete this thesis.

I further wish to express my gratitude to Prof. Dr. Adel Yehia Akl and Prof. Dr.

Mohamed A. Naiem Abdel-Mooty, Professor of Structural Analysis and Mechanics,

Structural Engineering Department, Faculty of Engineering, Cairo University and to Dr.

Nasser Zaki Ahmed, Assistant Professor of Structures, Structural Engineering

Department, Faculty of Engineering, Beni-Suef University for their supervision,

encouragement, support, valuable comments and excellent guidance during my thesis. I

have learned a lot from them. And without them, I would have not been able to

complete this work.

Furthermore, I would like to express my deepest gratitude to my father, my mother, my

sisters and my brother for giving me a wonderful environment to grow in. They never

stop supporting, encouraging and helping me to complete my research and to achieve

everything in my life.

Finally, I would like to thank all my friends and everyone who helped me with

scientific information or kind words through my thesis.

i

Table of contents

AC	KNO	OWLEDGMENTS	i
TA	BLE	OF CONTENTS	ii
LIS	ST O	F TABLES	vi
LIS	ST O	F FIGURES	viii
AB	STR	ACT	xii
СН	APT	TER 1 INTRODUCTION	1
1.1	Gen	neral	1
1.2	Prob	blem Statement	2
1.3	Res	search Scope and Objectives	2
1.4	Arra	angement of the Thesis	3
CH	APT	TER 2 LITERATURE REVIEW	4
2.1	Intro	oduction	4
2.2	Diff	ferent type of pounding	4
2	.2.1	Stereo mechanical model	4
2	.2.2	Linear spring model	5
2	.2.3	Kelvin-Voight element model	6
2	.2.4	Modified Kelvin element model	6
2	.2.5	Hertz contact element model	7
2	.2.6	Hertz damp Model	8
2	.2.7	Analytical solution	8
2.3	Miti	igation of pounding effect	
	.3.1	Colliding of unaligned slab	
2	.3.2	Colliding of aligned slab	12

2.4	Rev	iew of previous work	12
2.5	Fac	tors affecting pounding	18
2.6	Cod	le Requirement to avoid pounding	20
CH	IAPT	TER 3 MODELLING AND ANALYSIS PROCEDURE	22
3.1	Intr	oduction	22
3.2	Nur	nerical models	22
3.3	Mat	erial properties	26
3.4	Proj	perties of gap element:	26
3.5	Loa	ds	27
3	3.5.1	Gravity loads	27
3	3.5.2	Earthquake load	28
3	3.5.3	Scaled ground motion to Egyptian response spectrum	32
3	3.5.4	Response spectrum and time-history analysis code requirement	33
3	3.5.5	Loads combination	34
3.6	Des	ign of buildings	34
3	3.6.1	Design assumptions	34
3.7	Mod	dal analysis	35
3	3.7.1	Colliding model	37
3	3.7.2	Pounding verification model	37
CH	IAPT	TER 4 PARAMETRIC STUDY AND RESULTS	39
4.1	Intr	oduction	39
4.2	Sep	aration distance according to the Egyptian code	39
4.3	Nor	n-linear time history analysis	42
4	1.3.1	Case (1) 6-story and 6- story buildings	42
4	1.3.2	Case (2) 12-story and 12- story buildings	42
4	1.3.3	Case (3) 3-story and 6- story buildings	42
4	1.3.4	Case (4) 3-story and 8- story buildings	47

4	4.3.5	Case (5) 6-story and 12- story buildings	52
4	4.3.6	Case (6) pounding between 8-story and 12-story buildings	57
4.4	Para	metric study	62
4	4.4.1	Effect of gap size (5, 10, 20 and 40 mm) on max pounding force	62
4	4.4.2	Effect of increasing mass on max pounding force	64
4	4.4.3	Effect of stiffness increase of building on max ponding force	67
CF	HAPT]	ER 5 POUNDING MITIGATION TECHNIQUE	69
5.1	Intro	duction	69
5.2	Build	ding configuration with connection	69
5.3	Link	ing Approch	73
	5.3.1	Linking effect in Time period	73
	5.3.2	Linking effect on thermal stresses	74
:	5.3.3	Check change in moment after connecting the two structures	75
:	5.3.4	Check change in base shear after connecting two structures	75
	5.3.5	Check straining action in linked member between two structure after	r
(connect	ing two structures	76
5.4	Time	e history analysis of connected buildings at first floor	76
:	5.4.1	(Case 3) 3-story to 6-story	76
:	5.4.2	(Case 4) 3-story to 8-story	78
:	5.4.3	(Case 5) 6-story to 12-story	79
:	5.4.4	(Case 6) 8-story to 12-story	80
5.5	Time	e history analysis of connected buildings at mid floor	82
:	5.5.1	(Case 3) 3-story to 6-story	82
:	5.5.2	(Case 4) 3-story to 8-story	82
:	5.5.3	(Case 5) 6-story to 12-story	83
:	5.5.4	(Case 6) 8-story to 12-story	85
5.6	Time	history analysis of connected buildings at first floor	86

5.7	Con	nparing between pounding force when linked at various location	86
5	.7.1	Friuli time history	86
5	.7.2	Newhall time history	88
5	.7.3	Sylmar time history	90
СН	APT	TER 6 SUMMARY AND CONCLUSION	93
6.1	Sun	nmary	93
6.2	Con	clusion	93
6.3	Rec	ommendations for future studies	94
RE	FER	ENCES	95
AP	PEN	DICES	98
App	endix	(A): Design of buildings using in study due to Gravity and Lateral lo	ads 98
A.1	Desig	n of building 3-story	98
App	endix	(B) The first three mode shape of two adjacent buildings for all stud	ied
	case	es	112

`

LIST OF TABLES

Table (2.1): Factor effect on pounding force in previous work
Table (2.2): Code provision minimum separation distance for various codes20
Table (3.1): Geometry of study cases
Table (3.2): Summary of buildings
Table (3.3): Material characteristic
Table (3.4): Values of applied load for structure
Table (3.5): Seismic design chosen in this work
Table (3.6) Characteristic of the selected ground motion
Table (3.7): Modified story shear from time history analysis under Friuli ground motion
to 85% of base shear from Egyptian response spectrum
Table (3.8): Modified Base shear from time history analysis under Newhall ground
motion to 85% of base shear from Egyptian response spectrum33
Table (3.9): Modified Base shear from time history analysis under Sylmar ground
motion to 85% of base shear from Egyptian response spectrum34
Table (3.10): Column and beam dimensions
Table (3.11): Fundamental period for all height of building with 4-bay36
Table (3.12): Fundamental period for all height of building with 8-bay36
Table (3.13): Mass participation for all modes building with 4-bay36
Table (3.14): Mention mass participation for all modes building with 8-bay37
Table (4.1): Sufficient gap according to Egyptian code under Newhall ground motion 39
Table (4.2): Separation distance was chosen as ratio from sufficient gap according to
Egyptian code 25%, 50%, 75% and 100% under Newhall ground motion40
Table (4.3): Sufficient gap according to Egyptian code under Sylmar ground motion .40
Table (4.4): Separation distance was chosen as ratio from sufficient gap according to
Egyptian code 25%, 50%, 75% and 100% under Sylmar ground motion41
Table (5.1): Linked beam at any story for all cases70
Table (5.2): Summarize of buildings after connected at first floor70
Table (5.3): Summarize of buildings after connected at mid floor71
Table (5.4): Summarize of buildings after connected at last floor72
Table (5.5): Time period for structure before and after connected at various location73
Table (5.6): Effect of Temperature after link at various locations for case 374
Table (5.7): Effect of Temperature after link at various location for case 475

Table (5.8): Effect of Temperature after link at various locations for case 5	.75
Table (5.9): Comparison between moment before and after link at various locations	.75
Table (5.10): Comparison between base shear before and after link at various location	ons
for case 4	.76
Table (5.11): Normal force when connected building at floor	.76

LIST OF FIGURES

Figure (1.1): Damage between two structures has insufficient separation distance	1
Figure (1.2): Separation distance between adjacent structures	2
Figure (2.1): Liner spring model between two masses [5]	5
Figure (2.2): Kelvin-Voight element with added damper [7]	6
Figure (2.3) Modified Kelvin element model [5]	7
Figure (2.4): Hertz damp model [5]	8
Figure (2.5): MDOF for three adjacent masses [10]	9
Figure (2.6): Two building with unequal height	10
Figure (2.7): Plan of protruding colliding shear wall protrude from property line	11
Figure(2.8): springs in all directions [17]	15
Figure (2.9): Experimental impact between 3-story and 8-story (engineering res	earch
laboratory at the university of British Colombia[22]	17
Figure (2.10): Impact element between two structure at shake table test [22]	18
Figure (3.1) Building layout (plan)	23
Figure (3.2) Building layout (Elevation)	23
Figure (3.3): Gap element	26
Figure (3.4): Horizontal Egyptian design spectrum	29
Figure (3.5): Time history graph between time (sec) and ground motion (Friuli)	max
peak ground acceleration (.31) g	31
Figure (3.6): Time history graph between time and ground motion (Newhall) gr	round
motion with max peak ground acceleration (.6) g	31
Figure (3.7): Time history graph between time and ground motion (Sylmar) gr	round
motion with max peak ground acceleration (.76) g	31
Figure (3.8): Scaled response spectrum and time history of (Friuli)ground motion	on (g)
max peak ground acceleration (.32) g scaled to (.15g)	32
Figure (3.9): Scaled response spectrum and time history of (Newhall) ground m	otion
with max peak ground acceleration (.6) g scaled to (.15g)	32
Figure (3.10): Scaled response spectrum and time history of (Sylmar) ground m	otion
with max peak ground acceleration (.76) g. scaled to (.15g)	32
Figure (3.11): Collision points at slab to slab	38
Figure (4.1): Relation between increase gap and max pounding force under New	whall
ground motion	41

Figure (4.2): Distribution of max pounding force on various floors (gap 5 mm) for case
3
Figure (4.3): Distribution of max pounding force on various floors (gap 10 mm) for
case 3
Figure (4.4): Story shear force on floors for (3-story) for case 344
Figure (4.5): Story shear force on floors for (6-story) for case 3
Figure (4.6): Displacement on floors for (3-story) for case 3
Figure (4.7): Displacement on floors for (6-story) for case 3
Figure (4.8): Distribution of max pounding force on floors (gap 5 mm) for case 447
Figure (4.9): Distribution of max pounding force on floors (gap 10 mm) for case 448
Figure (4.10):Distribution of max pounding force on floors (gap 20 mm) for case 448
Figure (4.11): Story shear force on floors for (3-story) for case 449
Figure (4.12): Story shear force on floors for (8-story) for case 4
Figure (4.13): Displacement on floors for (3-story) for case 4
Figure (4.14): Displacement on floors for (8-story) for case 4
Figure (4.15): Distribution of max pounding force on floors (gap 5 mm) for case 552
Figure (4.16): Distribution of max pounding force on floors (gap10mm) for case 553
Figure (4.17): Distribution of max pounding force on floors(gap 20 mm) for case 553
Figure (4.18): Story shear force on floors for (6-story) for case 554
Figure (4.19): Story shear force on floors for (12-story) for case 5
Figure (4.20): Displacement on floors for (6-story) for case 5
Figure (4.21): Displacement on floors for (12-story) for case 5
Figure (4.22): Distribution of max pounding force on floors (gap 5 mm) for case 657
Figure (4.23): Distribution of max pounding force on floors (gap10 mm) for case 658
Figure (4.24): Distribution of max pounding force on floors (gap20 mm) for case 658
Figure (4.25): Story shear force on floors for (8-story) for case 6
Figure (4.26): Story shear force on floors for (12-story) for case 3 Story60
Figure (4.27): Displacement on floors for (8-story) for case 6
Figure (4.28): Displacement on floors for (12-story) for case 6
Figure (4.29): Max pounding force at various gap under Friuli ground motion63
Figure (4.30): Max pounding force at various gap under Newhall ground motion63
Figure (4.31): Max pounding force at various gap under Sylmar ground motion64
Figure (4.32): Max pounding force for three cases under gap 5 mm

Figure (4.33): Max pounding force under Newhall ground motion for three cases with
difference mass
Figure (4.34): Max impact force under Sylmar ground motion for three cases with
difference mass
Figure (4.35): Max pounding force for five cases under gap 5 mm
Figure (5.1): Geometry of structures after connected
Figure (5.2): Max pounding force on different floors (gap 5 mm) for case 3 (building
connected on first floor)
Figure (5.3): Distribution of max pounding force on floors (gap 10 mm) for case 3
(building connected on first floor)
Figure (5.4): Max pounding force on different floors (gap 5 mm) for case 478
Figure (5.5): Distribution of max pounding force on different floors (gap 10 mm) for
case 4
Figure (5.6): Distribution of max pounding force on floors (gap 5 mm) for case 579
Figure (5.7): Distribution of max pounding force different on floors (gap 10 mm) for
case 5
Figure (5.8): Distribution of max pounding force on floors (gap 20 mm) for case 580
Figure (5.9): Distribution of max pounding force on floors (gap $5~\text{mm}$) for case $6~80$
Figure (5.10): Distribution of max pounding force on floors (gap 10 mm) for case $6 \dots 81$
Figure (5.11): Distribution of max pounding force on floors (gap 20 mm) for case $6 \dots 81$
Figure (5.12): Distribution of max pounding force on floors (gap 5 mm) for case 382
Figure (5.13): Distribution of max pounding force on floors (gap 5 mm) for case 483
Figure (5.14): Distribution of max pounding force on floors (gap 5 mm) for case 584
Figure (5.15): Distribution of max pounding force on floors (gap 10 mm) for case $5 \dots 84$
Figure (5.16): Distribution of max pounding force on floors (gap 5 mm) for case 885
Figure (5.17): Distribution of max pounding force on floors (gap10 mm) for case 886
Figure (5.18): Max pounding forces under Friuli which linked in various locations with
gap 5 mm
Figure (5.19): Max pounding force under Friuli which linked in various location with
gap 10 mm87
Figure (5.20): Max pounding force under Friuli which linked in various location with
gap 20 mm

Figure (5.21): Max pounding force under Newhall which linked in various location
with gap 5 mm89
Figure (5.22): Max pounding force under Newhall which linked in various location
with gap 10 mm89
Figure (5.23): Max pounding force under Newhall which linked in various location
with gap 20 mm90
Figure (5.24): Max pounding force under Sylmar which linked in various location with
gap 5 mm91
Figure (5.25): Max pounding force under Sylmar which linked in various location with
gap 10 mm91
Figure (5.26): Max pounding force under Sylmar which linked in various location with
gap 20 mm92