PREPARATION OF BIODEGRADABLE SCAFFOLD FOR DENTAL AND MEDICAL TISSUE ENGINEERING

Thesis submitted to the Faculty of Oral and Dental Medicine, Cairo University, in partial fulfillment of the requirements of Doctor of Philosophy Degree in Basic Dental Science (Dental Materials)

By

Gihan Hafiz Waly Ahmed
B.D.S., M.D.Sc. (Cairo)
Assistant Lecturer
Biomaterials Department
Faculty of Oral and Dental Medicine
Cairo University

FACULTY OF ORAL AND DENTAL MEDICINE CAIRO UNIVERSITY

Supervisors

Prof. Dr. Inas Sami Abdel Hamid Professor of Dental Materials Faculty of Oral and Dental Medicine Cairo University

> Prof. Dr. Mona Kamal Marei Professor of Prosthodontics Faculty of Dentistry Alexandria University

Dr. Mohamed Abdel Gawad Sharaf Associate Professor of Chemistry Faculty of Science Helwan University

Acknowledgement

I would like to convey my deep appreciation to those who have contributed to this thesis without whose help, my work would not have been possible. First, I'd like to express my sincere gratitude to my dear mother and major supervisor *Prof. Dr. Inas Sami Abdel Hamid*, Professor of Dental Materials, Faculty of Oral and Dental Medicine, Cairo University, for her scientific guidance and continuous encouragement throughout this work. She was always there whenever I needed her and she saved no effort or time to teach and support me. Without her sincere help, none of this work would have been accomplished.

I would like also to acknowledge *Prof. Dr. Mona Kamal Marie*, Professor of Prosthodontics, Faculty of Dentistry, Alexandria University, for her technical guidance, academic support and sincere help.

My deep thanks are devoted to *Dr. Mohamed Abdel Gawad Sharaf*, Associate Professor of Chemistry, Faculty of Science, Helwan University, for the invaluable support he gave me in the field of chemistry and for making all the facilities of his laboratory at my hand.

I am greatly indebted to *Dr. Naglaa Abd El Reheem El Kinaai*, Lecturer in the Tissue Culture & Cytogenetics Unit, Pathology Department, National Cancer Institute, Cairo University, for teaching me the principles of cell culture. She

spared no effort to provide me with all the technical facilities and scientific resources I needed for my thesis.

My appreciation is also devoted to *Mrs. Hoda Mohamed Abdallah*, the cell culture technician, for helping me in the cell culture procedures and to *Dr. Abdel Mon'em El Dewic*, the veterinary surgeon, who helped me in the experimental animal part of the thesis. My deep gratitude is also due to *Mr. Mohamed El Shahat*, who prepared the molds used in the study.

Last but not least, I want to thank all my colleagues and professors in the Biomaterials department who always encouraged and supported me.

Dedication

I would like to dedicate this thesis to my dear parents, *Prof. Dr. Hafez Waly* and *Mrs. Hanaa Salah El-Din*. No words can ever express my gratitude for all what they have done for me. They taught me every thing I know in this life. They were always there to support me with their love and enclose me with their care.

I also dedicate this work to my darling husband, *Ibrahim Badr El-Din*, and my kids, *Marwan* and *Kareem*, who helped me in every part of this thesis. They supported me in all the hard times I have been through. Without their support and patience, nothing of this work would have been possible.

Last but not least, I dedicate the thesis to my beloved sister, *Heba*, for the time and effort she freely gave to help me through my study.

List of Contents

Acknowledgement	iii
Dedication	v
List of Contents	vi
Nomenclature	xii
List of Tables	xv
List of Figures	xvi
Chapter 1: Introduction	1
Chapter 2: Review of Literature	3
2.1. <u>Tissue engineering</u> :	4
2.1.1. The concept of tissue engineering	4
2.1.2. The history of tissue engineering	5
2.1.3.Other strategies of tissue engineering	6
2.2. <u>Tissue engineering scaffold</u> :	7
2.2.1. The role of scaffold in tissue engineering	7
2.2.2. Properties of an ideal scaffold material	8
2.2.3. Scaffold characterization:	10
2.2.3.1. Measurement of porosity	10
2.2.3.2. Measurement of degradation	12
2.2.3.3. Measurement of mechanical properties	13
2.2.4. Classification of scaffold materials:	13
2.2.4.1. Polymers:	13
2.2.4.1.1. Natural polymers	14
2.2.4.1.2. Synthetic polymers	16
2.2.4.1.3. Hybrid natural-synthetic polymer	
scaffolds:	18

2.2.4.1.3.1. Direct blending
2.2.4.1.3.2. Surface modification
2.2.4.2. Ceramics
2.2.4.3. Composite polymer-ceramic scaffold 20
2.2.5. Chitosan and cellulose:
2.2.5.1. Chitosan:
2.2.5.1.1. Chemical origin and nature of chitosan 22
2.2.5.1.2. Properties of chitosan:
2.2.5.1.2.1. Biocompatibility and cellular response to
chitosan
2.2.5.1.2.2. Bioadhesion of chitosan
2.2.5.1.2.3. Antibacterial action of chitosan 24
2.2.5.1.2.4. Hemostatic action of chitosan 25
2.2.5.1.2.5. In vivo degradation of chitosan 25
2.2.5.2. Cellulose
2.2.6. Scaffold designs and fabrication techniques: 29
2.2.6.1. Fibrous scaffolds:
2.2.6.1.1. Fiber bonding
2.2.6.1.2. Electrospinning
2.2.6.2. Porous foams:
2.2.6.2.1. Techniques used with polymers: 31
2.2.6.2.1.1. Solvent casting/particulate leaching 33
2.2.6.2.1.2. Gas foaming (High pressure processing) 33
2.2.6.2.1.3. Freeze drying
2.2.6.2.1.4. Phase separation (emulsification)/ freeze
drying 34
2.2.6.2.1.5. Microsphere sintering

2.2.6.2.1.6. Solid Freeform Fabrication (SFF)	35
2.2.6.2.2. Techniques used with ceramics:	36
2.2.6.2.2.1. Direct foaming	36
2.2.6.2.2. Polymer foam replication	37
2.2.6.2.2.3. Solid freeform fabrication (SFF)	37
2.2.6.3. Injectable microspheres	37
2.2.6.4. Hydrogel scaffolds	38
2.2.7. Scaffolds with special features:	39
2.2.7.1. Nanofeatured scaffolds	39
2.2.7.2. Scaffolds releasing growth factors	41
2.3. Cells used in tissue engineering	42
2.4. Tissue engineering of structures related to the ora	<u>ıl-</u>
maxillofacial complex:	45
2.4.1. Tissue engineering of hard dental tissues and den	ıta
pulp	45
2.4.2. Tissue engineering of bone and cartilage	48
2.4.3. Tissue engineering of oral mucosa	49
2.4.4. Tissue engineering of salivary glands	51
2.4.5. Tissue engineering of periodontal ligament	52
Chapter 3: Aim of the study	54
Chapter 4: Materials and Methods	55
Materials	56
Methods:	58
4.1. Scaffold preparation	58
4.2. Scaffold characterization:	60
4.2.1. Pore structure analysis:	61

4.2.1.1. Two-dimensional pore structure analysis using
scanning electron microscope (SEM) 61
4.2.1.2. Three-dimensional pore structure analysis using
mercury intrusion porosimetry (MIP)62
4.2.1.2.1. Envelope (bulk) and apparent densities 64
4.2.1.2.2. Percent porosity
4.2.1.2.3. Incremental intrusion versus diameter (pore
volume distribution) 65
4.2.2. Mechanical characterization 66
4.2.3. Biodegradation test
4.2.4. Statistical analysis
4.3. Bone marrow isolation and mesenchymal stem cell
culture 69
4.4. Evaluation of scaffold biocompatibility
Factorial design of the study
Chapter 5: Results
5.1. Scaffold preparation
5.2. Scaffold characterization:
5.2.1. Pore structure analysis:
5.2.1.1. Two-dimensional pore structure analysis using
scanning electron microscope (SEM)
5.2.1.2. Three-dimensional pore structure analysis using
mercury intrusion porosimetry (MIP) 85
5.2.1.2.1. Envelope (bulk) and apparent densities 86
5.2.1.2.2. Percent porosity
5.2.1.2.3. Incremental intrusion versus diameter (pore
volume distribution) 87

5.2.2. Mechanical characterization	0
5.2.3. Biodegradation test	1
5.2.3.1. Change by time in each group	1
5.2.3.2. Comparison between the four groups regarding	18
their weight loss percent at the end of each	:h
week g)4
5.3. Bone marrow isolation and mesenchymal stem ce	:1]
culture 9) 6
5.4. Evaluation of scaffold biocompatibility:	9
5.4.1. Phase contrast microscope	9
5.4.2. Scanning electron microscope)(
Chapter 6: Discussion)7
6.1. Scaffold preparation and mechanisms of gelation10)7
6.2. Scaffold characterization:	. 1
6.2.1. Pore structure analysis:	2
6.2.1.1. Two-dimensional pore structure analysis usin	18
scanning electron microscope (SEM) 11	13
6.2.1.2. Three-dimensional pore structure analysis using	18
mercury intrusion porosimetry (MIP)11	13
6.2.1.2.1. Envelope (bulk) and apparent densities 11	4
6.2.1.2.2. Percent porosity	6
6.2.1.2.3. Incremental intrusion versus diameter (por	re
volume distribution)11	6
6.2.2. Mechanical characterization	7
6.2.3. Biodegradation test	21
6.3. Bone marrow isolation and mesenchymal stem ce	:11
culture 12	5

6.4. Evaluation of scaffold biocompatibility	126
Chapter 7: Summary, Conclusions, Application	ıs and
Recommendations for Further Work	129
7.1. Summary	129
7.2. Conclusions	133
7.3. Suggested clinical applications	134
7.4. Recommendations for further work	135
Chapter 8: References	137
Appendices:	
Appendix I	
Appendix II	
Appendix III	
Arabic Summary	

Nomenclature

Abbreviations:

BMP-2	Bone morphogenic protein-2
CAD	Computer-aided design
DDA	Degree of deacetylation
DMEM	Dulbecco's modified Eagle's medium
DPMCs	Dental papilla mesenchymal cells
ECM	Extracellular matrix
FBS	Fetal bovine serum
Glc	Glucose
GP	Glycerol phosphate
HEC	Hydroxyethyl cellulose
micro-CT	Micro-computed tomography
MIP	Mercury intrusion porosimetry
mRNA	messenger RNA = messenger ribonucleic acid
MSCs	Mesenchymal stem cells
n	Number of samples per group for a specific test
PBS	Phosphate-buffered saline
PCL	Poly(e-caprolactone)
PDLLA	poly(D,L-lactic acid)
PGA	Poly(glycolic acid)
PLA	Poly(lactic acid)
PLGA	Poly(lactic-co-glycolic acid)
PLLA	Poly(L-Lactic acid)
rpm	Round per minute
SD	Standard deviation
SE	Standard error
SEM	Scanning electron microscope

SFF	Solid freeform fabrication
TMJ	Tempromandibular joint
w/v	Weight/volume
в-GР	β-glycerol phosphate
в-тср	β-tricalcium phosphate

Symbols:

ΔW%	Weight loss percent
μ	Surface tension of mercury
D	Entry diameter of the intruded pore
P	Pressure applied to force mercury into pores with certain entry diameter
V	Volume of mercury filling the sample's open pores
$V_{ m Hg}$	Volume of mercury in the penetrometer at the end of the low pressure cycle
V_p	Total penetrometer volume
$V_{\rm sa}$	Sample's apparent volume
$ m V_{se}$	Sample's envelope volume
W	Total weight of the loaded penetrometer
W_{f}	Final sample's weight after degradation
$ m W_{Hg}$	Weight of mercury in the penetrometer at the end of the low pressure cycle
W_{i}	Initial sample's weight before degradation
W_p	Empty penetrometer's weight
W_{s}	Sample's weight
θ	Mercury's contact angle on chitosan surface
$ ho_{ m Hg}$	Mercury's density
$ ho_{ m sa}$	Sample's apparent density
$ ho_{ m se}$	Sample's envelope density

Units:

μl	microliter
μm	micrometer
μM	micromolar = μmol/L
g	gram
kD	kilodalton
kg	kilogram
M	molar = mol/L
ml	milliliter
mM	millimolar = mmol/L
mm	millimeter
MPa	megapascal

List of Tables

Table number	Table description	Page
1	Materials used in the different stages of the study	56
2	Compositions of the four chitosan-based scaffold groups	59
3	Factorial design of the study	82
4	ANOVA and Duncan's tests results of the envelope density (g/ml), apparent density (g/ml) and percent porosity for the four groups	85
5	ANOVA and Duncan's tests results of the compressive strength (MPa) for the four groups	90
6	Student's t-test results of the weight loss percent for group I.	91
7	Student's t-test results of the weight loss percent for group II	92
8	Student's t-test results of the weight loss percent for group III	92
9	Student's t-test results of the weight loss percent for group IV	93
10	ANOVA and Duncan's tests results of the weight loss percent for the four groups	95
11	Comparison between the scaffolds prepared in the current study and other chitosan-based scaffolds reported in literature regarding composition, fabrication technique, compressive strength and porosity.	120