

Enhanced Aerobic Biodegraradation of Some Toxic Hydrocarbon Pollutants

BY

Mohamed Refat M. ElShahawy

Ass. Lecturer
Departement for Radiation Microbiology
National Center for Radiation Research and Technology Atomic
Energy Authority
B.Sc (1995)

THESIS Submitted to Department of Microbiology Faculty of Science Ain-Shams University

Ph.D. of Science In Microbiology 2007

التكسير الحيوى الموائبالمحفز لبعض الملوثات المحود المدروكربونية السامة

رسالة مقدمة من محمد رفعت محمد الشبهاوي

مدرس مساعد
قسم الميكروبيولوجية الاشعاعية
المركز القومى لبحوث و تكنولوجيا الاشعاع
هيئة الطاقة الذربة

بكالوريوس العلوم (1995) قسم الميكروبيولوجي كلية العلوم جامعة عين شمس للحصول على دكتوراه الفلسفة في العلوم 2007

Enhanced Aerobic Biodegraradation of Some Toxic Hydrocarbon Pollutants

Ph.D Thesis

BY

Mohamed Refat Mohamed ElShahawy B.Sc (1995)

Board of Scientific Supervision

Prof.Dr. Ali Ibrahim Hammad
Professor of Microbiology & Head of
Biotechnology Department.
National Center for Radiation
Research and Technology
Atomic Energy Authority

Prof.Dr. Hassan Mahmoud Gebreel
Ass.Professor of Microbiology
Microbiology Department
Faculty of Science
Ain-Sham University

Prof. Dr. Mohamed Ibrahim Roushdy Professor of Petroleum Chemistry Egyptian Petroleum Research Institute and Ex-Chairman of the Institute

Dr. Abeer Emam Zakaria Lecturer of Microbiology National Center for Radiation Research and Technology Atomic Energy Authority

التكسير الحيوى الموائى المحفز لبعض الملوثات المحدروكربونية السامة

رسالة مقدمة من محمد الشهاوى محمد رفعت محمد الشهاوى بكالوريوس العلوم (1995)

تحت اشراف

أ.م.د/ حسن محمود جبريل استاذ الميكروبيولوجيا المساعد قسم الميكروبيولوجيا — كلية العلوم جامعة عين شمس

أ.د/ على ابراهيم حماد استاذ الميكروبيولوجيا و رئيس شعبة التكنولوجيا الحيوية بالمركز القومى لبحوث وتكنولوجيا الاشعاع-هيئة الطاقة الذرية

د / عبير امام زكريا مدرس الميكروبيولوجيا المركز القومى لبحوث وتكنولوجيا الاشعاع- هيئة الطاقة الذرية أ.د/ محمد ابراهيم رشدى أستاذ كيمياء البترول ورئيس معهد بحوث البترول الاسبق

ACKNOWLEDGEMENT

I wish to express my profound gratitude to **Prof. Dr. Hassan Mahmoud Gebreel**, Ass. Professor of Microbiology, Faculty of Science, Ain-Shams University for his precious help and for giving me a great deal of his knowledge, experience and the previlege of doing this work under his supervision.

It is really difficult for me to find how I could express my thanks and gratitude to **Prof.Dr**. **Ali Ibrahim Hammad**, Professor of Microbiology & Head of Biotechnology Department, National Center for Radiation Research and Technology .It was through his interest, support, criticism and unfailing encouragement that this work was achieved.

I want to express my deep appreciation and thanks to **Prof. Dr. Mohamed Ibrahim Roushdy**, Professor of Petroleum Chemistry, Egyptian Petroleum Research Institute and Ex-Chairman of the Institute for his great support

Great thanks for **Dr** . **Abeer Emam Zakaria** Lecturer of Microbiology National Center for Radiation Research and Technology for her help, knowledge and experience.

Thanks are also due to the Department of Microbiology, National Center for Radiation Research and Technology, Egyptian Petroleum Research Institute and my collegues for providing me with the facilities during the different stages of this investigation.

List of abbreviations

ACOPS: Advisory Committee on Pollution of Sea

BOD: Biological Oxygen Demand

BTEX: Benzene Toluene Ethylbenzene Xylene

COD: Chemical Oxygen Demand

Cfu: Colony Forming Units

DMF: N,N,Dimethylformamide

EPA: Environmental Pollution Agency

FSW: Fertilized Sea Water

GESAMP: Group of experts on the Scientific aspects of Marine

Pollution

HD: Hydrocarbon Degrader

HMW PAHs High Molecular Weight Polyaromatic Hydrocarbons

HPLC: High Performance Liquid Chromatography

MSO: Mineral Silica gel Oil medium

NRC: National Research Council

PAHs: Polyaromatic Hydrocarbons

PCP: Poly Chlrorinated Polyaromatics

REMIB: Regional Environmental Management Improvement

Project

TGY: Tryptone Glucose Yeast extract medium

TPH: Total Petroleum Hydrocarbon

TSS: Total Suspended Solids

UCM: Unresolved Complex Mixture

UV: Ultraviolet

VOC: Volatile Organic Compounds

CONTENTS	Page
Preface	1
Literature Review	3
1-Petroleum Oil in Marine Environments	3
1.1-Definintion of Petroleum	3
1.2- Chemical Composition and Physical Properties of Petroleum Oils	3
1.3-Inputs of Oil and Hydrcarbon on The Marine Environment.	5
1.3.1- Accidentally	5
1.3.2- Loading and discharging activity	5
1.3.3-Natural seeps	5
1.3.4-Petroleum extraction.	6
1.3.5-Petroleum Transportation	6
1.3.6-Petroleum Consumption	7
1.4- Hazards of Marine Oil Pollution	7
1.4.1- Effect of oil pollution on the marine ecosystem	7
1.4.2-Effects of oil pollution on the human health	10
1.4.3- Effects of oil pollution on the man's use of the sea	11
1.4.3.1-Tainting of fish by oil	11
1.4.3.2-Contamination of fishing gear and aquaculture facilities	12
1.4.3.3-Impact on tourism	12
1.4.3.4-Impact on industrial uses	12
1.4.3.5- Costs of oil pollution	13
1.5- Treatment of oil pollution	13
1.5.1- Natural Removal	13
1.5.2- Shoreline clean-up	13

1.5.3- Mechanical containment, recovery or removal	14
1.5.4-Chemical dispersion.	14
1.5.5-Other countermeasures	15
2- Petroleum Pollution in Gulf of Suez	16
3-Pollution sources in governorate of Suez	17
3.1- Sea-based pollution sources	17
3.2- land-based pollution sources	18
4-Microbial Degradation of Petroleum Hydrocarbons	20
4.1- Interactions of Microorganisms with Oil	20
4.1.1 – Protozoa	20
4.1.2 - Actinomycetes yeasts and fngi	21
4.1.3 –Microalgae	23
4.1.4-Bacteria	24
4.2-Distribution of hydrocarbon utilizing microorganisms	26
4.3- Chemistry of petroleum biodegradation	27
4.3.1- Biodegradation mechanism of paraffinic fraction	27
4.3.2- Biodegradation of Polyaromatic Hydrocarbons	27
4.4- Physical and chemical factors affecting the biodegradation of hydrocarbons	31
4.4.1- Chemical composition of the oil	31
4.4.2- Physical state of oil pollutants	32
4.4.3- Concentration of the oil or hydrocarbons	34
4.4.4-Temperature	34
4.4.5-Oxygen	34
4.4.6-Nutrients	36
4.4.7- Salinity	37
4.4.8-Pressure	37

4.4.9- Water activity	38
4.4.10- pH	38
4.5- Biological factors affecting the Biodegradation of	
hydrocarbons	39
4.5.1- Adaptation - effect of prior exposure	39
4.5.2-Alteration of the genetic composition of the microbial community	41
4.5.3-Seeding	43
5- Bioremediation Technologies	46
5.1 EX situ methods	46
5.2-In situ methods	46
BioAugmentation and BioStimulation	47
6-Electromagnetic radiation	50
6.1-Definition and types of electromagnetic radiations	50
6.2-Types of radiation	51
6.3- Units of radiation	52
6.4-D ₁₀ -value	53
6.5- Radiation induced mutation	53
Materials and Methods	55
<u>Materials</u>	55
1- Base oil	55
2-Sea water samples	55
3-Bacterial isolates	55
4-Culture media	55
4.1- Medium used for isolation and enumertation of	
heterotrophic bacteria. Tryptone glucose yeast extract agar	55

4.2-Medium used for isolation and preservation of
petroleum utilizing bacteria silica-gel-oil-agar (SOA)
4.4-Medium used for adaptation of marine consortia on
polyaromatic hydrocarbon
1-Samples collection
1.1-Samples for microbiological analysis
1.2-Samples for hydrocarbon analysis
2- Microbiological methods
2.1-Enumeration of heterotrophic bacteria in polluted sea water samples
2.2-Enumeration of petroteum utilizing bacteria in sea water samples
2.3- Determination of degradation kinetics of phenanthrene containing microcosms by Suez Gulf microbial consortia and other abiotic factors
2.4-Isolation of PAHs Degrading microorganisms from
Enrichment of sea water 2.4.1-First Enrichment 2.4.2-Second Enrichment
2.5- Preservation of the mixed and pure isolated marine petroleum utilizing bacteria
2.6 -Selection of the most promising hydrocarbon utilizing isolates
2.7- Morphological characterization of PAHs degrading microorganisms from Suez Gulf.
2.8-Examination of the bacterial isolates at a broad range of incubation temperatures
2.9-Determination of tolerance of the bacterial isolates to different base oil concentration
2.10- Determination of the incubation period for each bacterial isolate on MSO

2.11- Determination of the biodegradation kinetics of the	
selected PAHs degrading bacteria	62
2.12- Characterization and identification of the most	
promising isolate	
2.12 Commo invadiation of the colocted most promising	62
2.13- Gamma irradiation of the selected most promising	62
biodegrading isolate	02
2.14- Examination of biostimulation efficiency for PAH	<i>(</i> 2
bioremediation in marine environment	63
2.15- Examination of bioaugmentation efficiency for PAH	
bioremediation in marine environment	64
2.16-Comparative study between biostimulation and	
bioaugmentation for PAHs bioremediation in marine	
microcosms	64
2.17- A comparative semipilot study for PAH remediation in	
artificially polluted marine basins using biostimulation and	
bioaugmentation technologies	65
3- Chemical methods	67
3.1-Extraction of hydrocarbons from sea water samples and	
gravimetric estimation	67
3.2-Ultraviolet spectraphotometric analysis	67
3.3-Gas chromatographic analysis	68
3.4- High performance Liquid chromatographic (HPLC) analysis	68
Results	69
	
1-Impact of petroleum oil pollution on marine	C C
microorganisms	69
2-Biodegradation Potential Kinetics of Suez Gulf	
Consortia at different concentrations of	
Dhananthuana (DAII) in manina anvivanment	72
Phenanthrene (PAH) in marine environment	12
3- Isolation of PAHs Degrading microorganisms from	
Suez Gulf	
	81
3.1- Incubation period	83

3.2- Growth at different temperature
3.3- Tolerance of the isoltes to different concentrations of
base oil
3.4-Biochemical characterization of the most promising
bacteriar isolate
4-Effect of γ-Irradiation on Growth And
Blodegradation Potentials of HD20
5- Application of Bioremediation Technologies
5.1-Biostimulation for PAH Bioremediation
5.2- Bioaugmentation for PAH Bioremediation
5.3-Comparative Study between Biostimulation and
Bioaugmentation for PAHs Bioremediation in Marine
Microcosms
6-Efficacy of Biostimulation and Bioaugmentation in
Artificially polluted basins
Discussion
1-Impact of petroleum oil pollution on marine
microorganisms
2-Biodegradation Potential Kinetics of Suez Gulf
Consortia at different concentrations of
Phenanthrene (PAH) in marine environment
3- Isolation of PAHs Degrading microorganisms from
Suez Gulf
4-Effect of γ-Irradiation on Growth And
Biodegradation Potentials of HD20
5- Application of Bioremediation Technologies
6-Efficacy of Biostimulation and Bioaugmentation in
Artificially polluted basins
Summary.
Refereces
الملخص العربي

Abstract

Samples were collected from the same location in Suez Gulf during the period from June, 2004 to April 2006 then microbiologically and chemically analyzed. The TPH levels ranged from 55 to 86 ppm and exceeded the known permissible limits referring to a settled situation of chronic hydrocarbon pollution in the studied area. On the other hand the biodegrading bacterial counts cfu clearly reflected the great adaptation of endogenous bacteria to use hydrocarbons as a sole source of carbon. The ratio of biodegrading bacteria to heterotrophic ones ranged between 26 and 50 % over the period of collection.

The biodegradation potentials of Suez Gulf consertia were studied at different concentrations of phenanthrene as a sole carbon source. It was found that the degradation kinetics of phenanthrene either due to biotic or abiotic factors is affected with the initial concentration of PAHs.

Twenty PAHs degraders were isolated from Suez Gulf Consortia after different adaptation periods on phenanthrene. Ten isolates were selected to be promising due to their ability to tolerate high base oil concentrations, grow at wide range of temperatures and their short incubation period on MSO. The biodegradation kinetics of 200ppm phenanthrene by the selected isolates was monitored by HPLC.

Isolate HD20 was selected due to its fast and remarkable abilities to breakdown phenanathrene. It was then exposed to different doses of gamma radiation in order to increase their biodegradation potentials.

The biodegradation potentials of single selected irradiated colonies and the whole irradiated cultures were tested separately in marine microcosms containing phenanthrene. The selected single colony at dose of 0.7 kGy (S7) showed the maximum degradation potential and preserved on MSO for bioaugmentation experiments.

The optimal concentration of an inorganic fertilizers was used in marine microcosms containing phenanthrene and compared with different concentrations of organic fertilizer (Rice straw) for biostimulation of PAHs degradation by natural marine consortia. The superiority of the biostimulation action of rice straw over the inorganic alternatives has been proven. A direct relationship between the concentration of organic fertilizer on one side and both biotic and abiotic degradation potentials of phenanthrene on the other side .

Bioaugmentation study was applied using the promising isolate at 0.7 kGy (S7) in Different concentrations. Bioaugmentation microcosms presented high degradation potential of phenanthrene (31%) especially which contain the highest concentration of the augmented isolate.

On comparing biostimulating action using 1.0 gm/l of rice straw (the optimal chosen fertilizer) to the seeded fertilized microcosms using

the best inoculum concentration of HD20 on phenanthrene biodegradation in marine microcosms, it was found that there is no observable difference between both treatments on the bench scale.

In order to upscale the previous bench-scale results of biostimulation and bioaugmentation experiments, 25 litre capacity basins containing artificially polluted Suez Gulf water with 1000 ppm Balaeem base oil were used to represent biostimulation, bioaugmentation and untreated controls. A Remarkable increase in the total bacterial count and hydrocarbon degrading bacteria was observed in biostimulation basins and bioaugmentation basins in comparison to the control basins.

Total Petroleum Hydrocarbons (TPH) was determined gravimetrically while paraffins, isoparaffins and UCM were determined using gas chromatographic analysis of the residual hydrocarbons in each basin. The data show remarkable decrease in TPH (53%), Paraffins, Isoparaffins and UCM of biostimulation basins while there was slight reduction in those of control and bioaugmentation (15%) basins which refer to higher microbial activity in biostimulation basins.

Polyaromatic hydrocarbons in extracted base oil samples from control, biostimulation and bioaugmentation basins were analyzed by HPLC technique. Phenanthrene disappeared completely in the extracted base oil samples from both biostimulation and bioaugmentation basins. On the other hand flourene and fluoranthene completely diapeared in biostimulation basins with the appearance of anthracene and pyrene.

المستخلص العربي

1- لقد تم دراسة العلاقة بين تركيز و نوع التلوث البترولي من ناحية و اتجاهات الكسير الحيوى لدى الكائنات الدقيقة و ذلك في محطة على ساحل شركة النصر للبترول. ولهذا الغرض قد تم جمع عينات من نفس الموقع على خليج السويس خلال الفترة من يونيو 2004 الى ابريل و تم تحليلها ميكروبيولوجيا و كيميائيا. و لم يكن هناك اختلافات واضحة بين نتائج تحليل العينات التي جمعت خلال فترة الدراسة.

وقد تعددت الهيدروكربونات البترولية الكلية الحدود المسموح بها لكى تكون 10 جزء فى المليون فى العينات التى جمعت فى القترة من يونيو 2004 حتى ابريل 2006 و ذلك يشير الى استقرار الوضع كتلوث مزمن فى المنطقة تحت الدراسة.

من ناحية اخرى فان العد الميكروبي يعكس التكيف الكبير الذي يحدث للبكتريا الطبيعية لكي تستخدم الهيدروكربونات كمصدر وحيد للكربون.

2- لقد تم دراسة قدرات التكسير الحيوى للميكروبات في منطقة خليج السويس في اوساط تحوى تركيزات مختلفة من الفينانثرين كمصدر كربون وحيد. و اتضح من معدل التكسير للفينانثرين اما نتيجة النشاط الميكروبي او غير الميكروبي انه يتأثر بالتركيز الاصلي للهيدروكربونات متعددة الحلقات حيث انه حقق اعلى نسبة تكسير بعد 6 ساعات عند تركيز 100 و 200جزء في المليون بينما حقق اعلى معدل تكسير عند تركيز 150 جزء في المليون بعد 12 ساعة. و تحقق اعلى تأثير بيولوجي كان عند تركيز 200 جزء في المليون.

3- كان الهدف من عزل السلالات البكتيرية التى تكسر المركبات الهيدروكربونية متعددة الحلقات هو التعريف و التوصيف لبعض السلالات التى تسهم فى عملية التكسير الحيوى و اختيار بعض السلالت التى لها القدرة العالية على التكسير و ذلك لاستخدامها فى عملية التكسير ودراسة عملية الحقن الميكروبي.

لقد نجحت 22 سلالة بكتيرية في النمو على البيئة MSO و التي تحتوى على الزيت الاساسى كمصدر كربونى وحيد و هذه السلالات تم عزلها من مياه خليج السويس قبل و بعد استخدام الفينانثرين في الوسط.

و لقد فشلت العز لات 12و 13و 15و 11 ان تنمو على البيئات الصلبة MSO& TGY . وقد تم اختبار العز لات لتحديد فترات الحضانة على نطاق واسع من درجات الحرارة و قدراتها على احتمال التركيزات المختلفة من الهيدروكربونات و ذلك لكى نختار العزلة الواعدة التى يكون لها النشاط أكبر.

و قد اتضح ان 77,26 % من العزلات كانت لها القدرة على النمو بوفرة و بقوة على MSO المحتوى على تركيز من الزيت 5000 و 10000 جزء في المليون بينما 54% فقط كان لها القدرة على النمو في التركيز 20000 جزء في المليون من الزيت.

و قد فشل 23 % من العز لات من النمو في درجات حرارة للتحضين مختلفة على TGY.

100% من العزلات فشلت في النمو بعد 24 ساعة عند درجة حرارة تحضين 15 م بينما 54% و 59,1 % من العزلات كانت قادرة على النمو في TGY بعد 24 ساعة عند درجة حرارة 25 م , 0.00% م , 0.00% م , 0.00% م ,

فشل 25% من العزلات في النمو على MSO بينما كلن هناك نمو سواء ضعيف او معتدل بعد 48 ساعة في 75% من العزلات و قد وصل النمو اقصاه بعد 72 ساعة حيث كان 50% من العزلات كان قادرا بدرجة متوسطة على النمو في MSO و قد اختيرت العزلات التي ربما تكون واعدة لقدرتها على مقاومة التركيزات العلية من الزيت و التي تنمو في نطاق و اسع من درجات الحرارة و فترة تحضين قصيرة على وسط MSO و قد تم اختبار عشر سلالات منتخبة وهي بالكارارة و فترة بالكار بالكار بالكار بالكار بالكار بالكار بالكار وهي بالكار بالكار بالكار بالكار بالكار بالكار بالكار بالكار بالكار و قد تم تتبع التكسير الحيوى للحلقات بواسطة كل عزلة على حدة.