

Osteopontin as a marker for assessment of vascular atherosclerosis in chronic hemodialysis patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Reham Abd Elaziz Hamed

M.B., B.Ch - Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Sahar Mahmoud Shawky

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Maha Abd El Moneim Behairy

Assistant professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

No words can express my deep sincere feelings Towards Prof. Dr. Sahar Mahmoud Shawky, Professor of Internal Medicine and Nephrology, Faculty of Medicine-Ain Shams University for her continuous encouragement, guidance and support she gave me throughout the whole work. It has been a great honor for me to work under her generous supervision.

I would like to express my deepest appreciation, respect and thanks to Dr. Maha Abd El Moneim Behairy, Assistant professor of Internal Medicine and Nephrology, Faculty of Medicine-Ain Shams University, for her continuous guide in all aspects of life beside her great science, knowledge and information.

Last but not least, sincere gratitude to My Family for their continuous encouragement and spiritual support.

Contents

Subjects	Page
List of abbreviations	II
List of figures	
List of tables	VIII
• Introduction	1
Aim of the work	5
• Review of Literature	
◆ Chapter (1): Atherosclerosis and	
Cardiovascular Disease in ESRD	6
◆ Chapter (2): Osteopontin in ESRD patients	s40
Patients and Methods	65
• Results	75
• Discussion	100
Summary and Conclusion	113
• Recommendations	117
• References	118
Arabic Summary	

List of Abbreviations

ABI : Ankle brachial index

ADMA : Asymmetrical dimethylarginine

ALK P : Alkaline phosphatase.

ADPKD : Autosomal dominant polyscytic kidney disease.

BMI : Body mass index

BP : Blood pressure.

BSP1 : Bone sialoprotein 1

BUN : Blood urea nitrogen

CAC : Coronary artery calcium

CIMT : Carotid intima media thickness

DD : Diastolic dysfunction

E/A ratio : Ratio of peak velocity flow in early diastole

(the E wave) to peak velocity flow in late

diastole caused by atrial contraction (the A wave)

EF : Ejection fraction

ETA1 : Eearly t-lymphocyte activation 1

HCV : Hepatitis c virus.

HDL : High density lipoprotein

iPTH : Intact parathyroid hormone

List of Abbreviations

ICAM1 : Intercellular adhesion molecule 1

IHD : Ischemic heart disease

IMT : Intima media thickness .

ILs : Interleukiens

LDL : Low density lipoprotein

LVH : Left ventricular hypertrophy.

LVMI : Left ventricular mass index

M-CSF : Macrophage-colony stimulating factor.

MGP : Matrixγ-carboxyglutamicacid protein

MMPs : Matrix Metalloproteinases

NO : Nitric oxide

OC : Osteocalcin

OPG : Osteoprotegerin

OPN : Osteopontin

oxLDL : Oxidized lipids and LDL

L-RANK: Linked receptor activator for nuclear

factor-K B ligand

RGD : Arginine-glycine-aspartic acid

SMCs : Smooth muscle cells

SPP1 : Secreted phosphoprotein 1

List of Abbreviations

SVVYGLR: Serine-valine-valine-tyrosine-

glutamate-leucine-arginine motif

TGs : Triglycerides.

TNF :Tumer necrosis factor.

URR : Urea reduction ratio

VC : Vascular calcification.

VCAM-1: Vascular adhesion molecule-1

VSMC's: Vascular smooth muscle cells

 α -SMA : α-smooth muscle actin

List of Figures

No.	<u>Figure</u>	Page
<u>1</u>	Initial steps in atherosclerosis.	9
<u>2</u>	Fatty streake formation.	10
<u>3</u>	Atheroma formation.	11
<u>4</u>	Atherosclerotic plaque formation.	12
<u>5</u>	Fibrous cap.	13
<u>6</u>	The normal muscular artery and the cell changes that occur during disease progression to thrombosis (clot formation).	15
7	The heart and arteries in (A) a healthy individual and (B) a representative patient on HD with LVH	24
<u>8</u>	The 3 variants of OPN isoforms and schematic diagram of osteopontin structure	43
9	The full length OPN cleavage by thrombin.	47
<u>10</u>	OPN cleavage by several matrix metalloproteinase (MMPs).	48
<u>11</u>	Mechanisms leading to VSMC phenotypic change and calcification in response to dysregulated mineral metabolism in chronic kidney disease.	58
<u>12</u>	A "balanced view" of OPN's role in atherosclerosis.	62
<u>13</u>	Measuring of the intima-media thickness.	70
<u>14</u>	The plaque morphology.	72
<u>15</u>	Correlation between osteopontin (ng/ml) and Ca×Po4 mg/dl (p>0.05).	82

List of Figures

No.	<u>Figure</u>	Page
<u>16</u>	Correlation between osteopontin (ng/ml) and ALK P U/L (p>0.05).	83
<u>17</u>	Correlation between osteopontin (ng/ml) and PTH pg/ml (p>0.05).	83
<u>18</u>	Comparison between the 3 tertile of OPN as regard to ALK P U/L ($p > 0.05$).	85
<u>19</u>	Comparison between the 3 tertile of OPN as regard to PTH pg/ml ($p > 0.05$).	86
<u>20</u>	Correlation between osteopontin (ng/ml) and CIMT Mean ($p > 0.05$)).	89
<u>21</u>	Correlation between osteopontin (ng/ml) and E.A Ratio (p >0.05)).	89
<u>22</u>	Correlation between osteopontin (ng/ml) and DF grade ($p > 0.05$)).	90
<u>23</u>	Correlation between osteopontin (ng/ml) and EF (%) ($p > 0.05$).	90
<u>24</u>	Comparison between the 3 tertile of OPN regarding to Mean CIMT ($p > 0.05$).	92
<u>25</u>	Comparison between the 3 tertile of OPN regarding to the atherosclerosis ($p > 0.05$).	93
<u>26</u>	Comparison between the 3 tertile of OPN regarding to Significant Stenosis ($p > 0.05$).	93
<u>27</u>	Comparison between the 3 tertile of OPN according to carotid atheromatous plaques $(p > 0.05)$.	94
<u>28</u>	Relation between osteopontin and LVH $(p > 0.05)$.	96

List of Tables

No.	<u>Table</u>	<u>Page</u>
1	Demographic characteristics of the studied cases and the used medications (N=80 patient).	76
2	Results of laboratory work-up of the studied cases $(n = 80)$.	77
3	Carotid duplex parameters of the studied cases (n=80).	78
4	ECHO parameters of the studied cases (n=80)	79
<u>5</u>	Comparison between the 3 OPN tertile according demographic characteristics of the patients.	80
<u>6</u>	Correlation between osteopontin and laboratory investigations.	81
7	Comparison between the 3 OPN tertile as regard laboratory results (n=80).	84
<u>8</u>	Association between osteopontin and gender, the studied carotid duplex and echo parameters	87
9	Correlation between osteopontin with the studied echo and carotid duplex parameters	88
<u>10</u>	Comparison between the 3 tertile of OPN according to carotid duplex parameters (n=80)	91
<u>11</u>	Comparison between the 3 tertile of OPN according to echo parameters (n=80)	95

List of Tables

No.	<u>Table</u>	<u>Page</u>
<u>12</u>	Correlation between Mean CIMT(mm) and	97
	the demographic data	91
<u>13</u>	Correlation between Mean CIMT(mm) and	98
	laboratory investigations	90
<u>14</u>	Multivariate analysis linear regression for	99
	all parameters affecting Mean CIMT (mm)	77

Introduction

Cardiovascular disease (CVD) is the most common cause of morbidity and mortality in dialysis patients (Go AS et al., 2014).

Atherosclerosis is the dominant cause of cardiovascular disease including myocardial infarction, heart failure, stroke, and claudication (**Frostegård et al.**, **2013**).

However, the death rates from CVDs remain fivefold higher among hemodialysis (HD) patients than in general populations (de Jager et al., 2009).

Several factors related to end stage renal disease (ESRD), such as elevated calcium-phosphate product and vascular calcifications, inflammations, over activity of the rennin-angiotensin system, and volume overload can be related to arterial stiffness (London et al., 2015).

HD patients were shown to exhibit increased intima media thickness (IMT), common carotid plaque, arterial stiffness, and coronary artery calcification and advanced atherosclerosis in the carotid artery compared with agematched healthy controls, assessment of the carotid intima media thickness (CIMT) using B-mode ultrasound is a

useful clinical tool for the measurement of atherosclerosis (Abassi et al., 2016).

CIMT≥0.9 mm has been shown to be a marker of generalized atherosclerosis and is associated with cardiovascular risk factors, increased CIMT may be one of the factors of access failure in HD patients (**Park et al.**, **2013**).

Carotid arteries are mirrors of coronary arteries, and left ventricular hypertrophy appears in approximately 40 % of patients with chronic renal insufficiency, and is even more frequent (75%) at the onset of ESRD (Gluba-Brzózka et al., 2016).

Many bone-associated proteins, including osteocalcin (OC), matrix γ-carboxyglutamic acid protein (MGP), osteoprotegerin (OPG), osteopontin (OPN) and fetuin A, are expressed in atherosclerotic plaques and participate in atherosclerotic calcification (**Gluba-Brzózka et al., 2014**).

Osteopontin (OPN) a 70 kDa, a bone-specific sialoprotein, that is highly negatively charged encoded on chromosome 4 in the human genome, it is acidic glycoprotein (Rangaswami et al., 2006).

OPN has several names including early T-lymphocyte activation 1 (ETA1) protein, secreted phosphoprotein 1 (SPP1) and bone sialoprotein 1 (BSP1), this plurality of names represent the multi-functionality of OPN, as well as its expression by various cell types including the kidney (**Pagel et al., 2014**).

In healthy kidneys, OPN is secreted into the urine it is thus conceivable that increases in circulating OPN are partly resulting from reduced urinary excretion; circulating osteopontin is closely and inversely related to GFR (Lorenzen et al., 2010).

OPN can promote adhesion and migration of vascular smooth muscle cells and play an important role in atherosclerosis and restenosis after angioplasty (**Fang et al., 2009**).

Osteopontin has a role in the development of atherosclerotic plaque, it has been shown to be chemotactic for inflammatory cells, there by promoting infiltration of macrophages and resultant release of proteolytic enzymes, as well as the expression of adhesion molecules and oxidative stress (Golledge et al., 2004).

It was shown that serum OPN was increased in patients with clinical and radiological features of carotid plaque (**Kadoglou et al., 2008**).

Introduction

OPN is a marker of the atherosclerotic process; its plasma level not only associated with the extension of the disease but also with its activity, as OPN is higher in unstable plaques versus stable plaques (Wolak, 2014).

The higher OPN level is, the more sever the renal function damage is, both OPN and renal failure are the risk factors for atherosclerosis, which is reflected by the fact that the severity of atherosclerosis is obviously increased with increase of OPN level or exacerbation of renal function damage (Chen et al., 2014).