THE EFFECT OF EXTRACTS OF SOME MEDICINAL AND AROMATIC PLANTS ON SOME PATHOGENIC MICROORGANISMS

By MARWA MOKHTAR IBRAHIM SAID AHMED

B. Sc. Agric. Sc. (Agricultural Microbiology), Ain Shams University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

THE EFFECT OF EXTRACTS OF SOME MEDICINAL AND AROMATIC PLANTS ON SOME PATHOGENIC MICROORGANISMS

By MARWA MOKHTAR IBRAHIM SAID AHMED

B. Sc. Agric. Sc. (Agricultural Microbiology), Ain Shams University, 2004

This thesis for M.Sc. degree has been approved by: Dr. Nesim Abd El-Aziz Mohamed Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture, Banha University. Dr. Hemmat Mohammed Abdelhady Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University. Dr. Awaad Mohamed Kandeel Prof. Emeritus of Ornamental, Medicinal and Aromatic Plants, Faculty of Agriculture, Ain Shams University. Dr. Wedad EL-Tohamy EL-Said Eweda Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Date of Examination: 21/06/2012

THE EFFECT OF EXTRACTS OF SOME MEDICINAL AND AROMATIC PLANTS ON SOME PATHOGENIC MICROORGANISMS.

By MARWA MOKHTAR IBRAHIM SAID AHMED

B. Sc. Agric. Sc. (Agricultural Microbiology), Ain Shams University, 2004

Under the supervision of:

Dr. Wedad EL-Tohamy EL Said Eweda

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture. Ain Shams University (Principal Supervisor)

Dr. Awaad Mohamed Kandeel

Prof. Emeritus of Ornamental, Medicinal and Aromatic Plants, Department of Horticulture, Faculty of Agriculture. Ain Shams University

تأثير مستخلصات بعض النباتات الطبية و العطرية على بعض الكائنات الحية الدقيقة الممرضة

رسالة مقدمة من مروة مختار إبراهيم سيد أحمد

بكالوريوس علوم زراعية (ميكروبيولوجيا زراعية) ، جامعة عين شمس ، 2004

للحصول على درجة الماجستير في العلوم الزراعية (ميكروبيولوجيا زراعية)

قسم الميكروبيولوجيا الزراعية كلية الزراعة جامعة عين شمس

ABSTRACT

Marwa Mokhtar Ibrahim Said Ahmed: The Effect of Extracts of Some Medicinal And Aromatic Plants on Some Pathogenic Microorganisms. Unpublished M. Sc. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2012.

This study aimed to evaluate the antimicrobial activity of 11 different essential oils such as Allium sativum. Cinnamomum cassia. Dianthus caryophyllus, Eucalyptus globulus, Majorana hortensis, Marticaria chamomilla, Mentha piperita, Nigella sativa, Ocimum basilicum, Pimpinella anisum and Thymus vulgaris against 5 Gramnegative bacteria, 6 Gram-positive bacteria and 6 pathogenic fungi. While all tested plant extracts produced some antibacterial and antifungal activities, Eucalyptus globules, Marticaria chamomilla and Thymus vulgaris were the most active plants extracts that showed potent antifungal activity. Minimum inhibitory concentration (MIC) of the most efficient extracts against all tested microorganisms and with special reference of Phytophthora infestans & Fusarium oxysporum were determined. The MIC of the plants extract ranged between 144.7 to 166.2 and 266 µg/ml. According to MIC effect, pot experiment was conducted to test the selected extracts in controlling late blight of tomato plant. Thymus vulgaris volatile oil extract and Matricaria chamomilla gave the best results in inhibiting of *Phytophthora infestans* in concentration of 600 and 400 µl/ml. Thymus vulgaris, Marticaria chamomilla and Thymus vulgaris were the most active plants extracts against Fusarium oxysporum in concentration of 600 µl/ml.

KeyWords: Medicinal plant extracts, MIC, antifungal activity, late blight disease,antibacterial activity.

ACKNOWLEDGEMENT

Praise and thanks be to Allah, the most merciful for assisting and directing me to the right way.

I would like my special deep gratitude to **Prof. Wedad El Tohamy Eweda** Prof. of Agricultural Microbiology, Agricultural Microbiology Dept., Faculty of Agriculture, Ain Shams University, for suggesting the problems, supervision, progressive criticism and scientific guidance.

Deep thanks also to **Dr. Mohamed Said Sharaf**, Associate Prof. of Agricultural Microbiology, Agricultural Microbiology Dept., Faculty of Agriculture, Ain Shams University, for supervision, encouragement and scientific guidance.

And also to **Prof. Award Mohamed Kandeel** Prof. of Ornamentals, Medicinal and Aromatic Plants, Horticulture Dept., Faculty of Agriculture, Ain Shams University, for supervision, encouragement and advices.

Grateful appreciation is extended to all members of Biofertilizers Unit and Agric. Microbiology Dept., Faculty of Agriculture, Ain Shams University, for their kind cooperation.

Thanks go to my family for their support. I would like to extend a special gratitude for their kindness.

CONTENTS

	Page
LIST OF TABLES	VII
LIST OF FIGURES	XII
List of photos	XV
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Chemical composition of some medicinal and aromatic plants	5
2.2. Antibacterial activity of medicinal and aromatic plants	11
2.3. Antifungal activity of medicinal and aromatic plants	16
2.4. Solvents used for extraction of active constituents of	21
medicinal and aromatic plants	
2.5. Mode of action of some medicinal and aromatic plants components	22
2.6. Specificity of essential oils	24
2.7. Synergism between the components of essential oils	24
2.8. Antimicrobial mode of action of different medicinal and	25
aromatic plants chemical groups	
2.8.1. Non-volatile substances.	25
2.8.2 Volatile substances	27
2.9. Major groups of antimicrobial compound from	28
aromatic plants	
2.9.1- Phenolics	29
2.9.2. Coumarins.	29
2.9.3.Tannins	29
2.9.4.Anthroquinones and Anthroquinone glycosides	29
2.9.5.Flavonoids.	30
2.9.6Iridoids.	30
2.10. Tomato in world	31

2.11. The potential of plant essential oils as biofumigant	31
against fungal and bacterial pathogens of tomato	
3. MATERIALS AND METHODS	40
3.1. Materials	40
3.1.1.Medicinal and Aromatic plants	40
3.1.2 Test microorganisms	41
3.1.3. Soil	31
3.1.4 Source of Seedling and phytopathogenic fungal	42
3.1.5 Media used	42
3.1.5.1. Nutrient agar medium.	42
3.1.5.2. Nutrient broth.	43
3.1.5.3. Bacteriological peptone water	43
3.1.5.4 Yeast malt agar medium	43
3.1.5.5. Potato dextrose agar medium	44
3.1.5.6. Czapek's agar medium	44
3.1.5.7. Fetilizers used	44
3.2. Methods	44 45
3.2.2 Preparation of phytopathogenic fungal	45
3.2.3 Preparation of Selected essential oils in greenhouse	45
3.2.4. Extraction of essential oil from plants	45
3.2.5. Preparation of essential oils extracts	46
3.2.6. Antibacterial activity.	46
3.2.7. Antifungal Assay	47
3.2.8. Minimal inhibitory concentration (MIC)	48
3.2.9. In vitro test of essential oils against fungal strains	48
3.3.10. Green house pot experiment	48
3.2.11. Disease severity.	
5.2.11. Discuse severity	49

3.2.12. Statistical analysis.	49
4. RESUIIILT AND DISCUSSION	51
Part I. 1. 4.1 Antimicrobial activity of medicinal and aromatic plant	51
4.1.1. Effect of plant extracts individually against test microorganisms.	51
4.1.1.1. Potent extract of <i>Allium sativum</i>	51
4.1.1.2 Potent extract of <i>Cinnamon cassia</i>	60
4.1.1.3 Potent extract of <i>Dianthus caryophyllus</i>	68
4.1.1.4 Potent extract of <i>Eucalyptus globulus</i>	73
4.1.1.5 Potent extract of <i>Majorana hortensis</i>	82
4.1.1.6 Potent extract of <i>Martricaria chamomilla</i>	87
4.1.1.7 Potent extract of <i>Mentha piperita</i>	93
4.1.1.8 Potent extract of <i>Nigella sativa</i>	99
4 .1.1.9 Potent extract of Ocimum bacilicum	105
4.1.1.10 Potent extract of <i>Pimpinella anisum</i>	110
41.11 Potent extract of <i>Thymus vulgaris</i>	116
4.1.2. Effect of plant extracts combinations against test microorganisms	124
4.1.2.1. Potent extract of the combinations of aqueous and	124
ethanolic extracts of Eucalyptus globulus and Matricaria	
chamomilla using aqueous or ethanolic as solvent.	
4 .1.2.2. Potent the combinations of aqueous and ethanolic	131
extracts of Eucalyptus globulus and Matricaria	
<i>chamomilla</i> 4.1.2.3. Potent extract of the combinations of aqueous and	132

ethanolic	extracts	Eucalynti	us olahuli	us and T	hvmus	vulo	aris
Ctilanone	CAHACIS	Бисигури	is gioduii	us ana 1	nymus	vuig	uris

4.1.2. 4.Potent extract of the combinations aqueous and ethanolic of <i>Eucalyptus globulus</i> and <i>Thymus vulgaris</i>	133
4.1.2.5. Potent extract of the combinations aqueous or ethanolic of <i>Martricaria chamomilla</i> and <i>Thymus vulgaris</i>	137
4.1.2.6. Potent extract of the combinations aqueous or ethanolic of <i>Martricaria chamomilla</i> and <i>Thymus vulgaris</i>	144
4.1.1.7. Antimicrobial activity of aqueous and ethanolic plant extracts against microorganisms strains.	146
4.1.1.7.1. Effect of ethanolic plant extracts.	146
4.1.1.7.2 Effect of aqueous plant extracts	152
4.1.1.8. Minimum inhibitory concentration (MIC) for plant extracts against microorganisms strains	158
4.1.1.8.1.Minimum inhibitory concentration of tested eathanolic plant extracts	158
4.1.1.8.2. Minimum inhibitory concentration of tested aqueous plants extracts.	163
4.1.1.8.3 Minimum inhibitory concentration (MIC) of tested ethanolic of mixture of plant extracts	168
4.1.1.8.4. Minimum inhibitory concentration (MIC) of tested aqueous of mixture of plant extracts	171
4.1.1.8.5. Minimum inhibitory concentration (MIC) of tested aqueous and ethanolic of mixture of plant extracts.	176
Part Π: 4.1.1.9. Application of the selected efficient essential oil extracts to control tomato disease	181
4.1.1.9.Tomato late blight disease.	181

4.1.1.10. Tomato fusarium wilt	189
SUMMERY	199
REFERENCES	208
ARABIC SUMMERY	

LIST OF TABLES

		Page
1	Medicinal and aromatic plants used.	36
2	Some Physico_ chemical properties of the experimental soil	37
3	Antimicrobial activity of aqueous or ethanolic racts of <i>Allium sativum</i>	54
4	Antifungal activity of aqueous or ethanolic extracts of Allium sativum	57
5	Antibacterial activity of aqueous or ethanolic extracts of <i>Cinnamon cassia</i>	62
6	Antifungal activity of aqueous or ethanolic extracts of <i>Cinnamon cassia</i>	65
7	Antibacterial activity of aqueous or ethanolic extracts of <i>Dianthus caryophyllus</i> .	70
8	Antibacterial activity of aqueouse or ethanolic extracts of <i>Eucalyptus globulus</i>	76
9	Antifungal activity of aqueouse or ethanolic extracts of <i>Eucalyptus globulus</i>	79
10	Antibacterial activity of aqueous or ethanolic extracts of <i>Majorana hortensis</i>	84
11	Antibacterial activity of aqueous or ethanolic <i>extracts</i> of <i>Matricaria chamomilla</i>	89
12	Antibacterial activity of aqueous or ethanolic extracts of <i>Mentha piperita</i>	95
13	Antibacterial activity of aqueous or ethanolic	101

VIII

extracts of Nigella sativa

14	Antibacterial activity of aqueous or ethanolic extracts of <i>Osmium bacilicum</i>	107
15	Antibacterial activity of aqueous or ethanolic extracts of <i>Pimpinella anissum</i>	112
16	Antibacterial activity of mixture of aqueous or ethanolic extracts of <i>Thymus vulgaris</i> .	119
17	Antifungal activity of mixture of aqueous or ethanolic extracts of <i>Thymus vulgaris</i> .	122
18	Antibacterial activity of mixtyre of aqueous or ethanolic extracts of <i>Eucalyptus globulus</i> and <i>Matricaria chamomilla</i> .	127
19	Antifungal activity of aqueous or ethanolic extracts of mixture of <i>Eucalyptus globulus</i> and <i>Thymus vulgaris</i>	134
20	Antibeterial activity of mixture of aqueous and ethanolic extracts of <i>Matricaria chamomilla</i> and <i>Thymus vulgaris</i>	141
21	Inhibition zone of bacterial growth affected by Medicinal and aromatic plants extracts	146
22	Inhibition zone of fungal growth affected by some ethanolic medicinal and aromatic plant extracts	150
23	Inhibition zone of bacterial growth affected by some	154

aqueous medicinal and aromatic plants extracts

24	Inhibition zone of fungal growth affected by some aqueous medicinal and aromatic plants extracts	156
25	Minimum inhibitory concentration (MIC) of tested ethanolic plants extracts against some bacterial strains	160
26	Minimum inhibitory concentration (MIC) of tested aqueous plants extracts against some bacterial strains	164
27	Minimum inhibitory concentration (MIC) of tested aqueous plants extracts against some fungal strains	166
28	Minimum inhibitory concentration (MIC) of the mixure of some medicinal and aromatic aqueous extracts against bacterial strains	173
29	Effect of <i>Eucalyputs globulus</i> oil extracts on growth parameters and severity of infected tomato plants with <i>Phytophthera infestans</i> race 6 as foliar inoculum.	185
30	Effect of <i>Thymus vulgaris</i> oil extracts on growth parameters and severity of infected tomato plants with <i>Phytophthera infestans</i> race 6 as foliar inoculum	186
31	Effect of <i>Matricaria chamomilla</i> oil extracts on growth parameters and severity of infected tomato plants with <i>Phytophthera infestans</i> race 6 as foliar inoculums	187
32	The effect of different concentrations of <i>Thymus</i> vulgaris extract on tomato infected with <i>Fusarium</i> oxysporum lycopersici rice 6 as root inoculum	191
33	The effect of different concentrations Maticaria	192

34	chamomilla and Eucalyptus globulus extracts mixture on tomato infected with Fusarium oxysporum lycopersici rice 6 as root inoculum.	
	The effect of different concentrations Maticaria	193
	chamomilla and Thymus vulgaris extracts mixture on	
	tomato infected with Fusarium oxysporum lycopersici	
	rice 6 as root inoculum	
35	The effect of different concentrations Thymus vulgaris and	194
	Eucalyptus globulus extracts concentrations on tomato	
	infected with Fusarium oxysporum lycopersici rice 6 as	
	root inoculum	