

Evaluation of Antitumor Activity of Zinc Nanoparticles Suspension in an Ionic Liquid

A Thesis

Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science

Submitted by

Mustafa Mahmoud Mohammed Elbakry

Biochemistry Demonstrator – Biochemistry department B.Sc. in Biochemistry (2009) – Faculty of Science - Ain Shams University

Under Supervision of

Prof. Dr. Amina M. Medhat

Prof. Dr. AbdelFattah M. Badawi

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University Professor of Applied Surfactant Chemistry Egyptian Petroleum Research Institute Scientific Consultant for Science & Technology Center of Excellence

Dr. Eman I. Kandil

Assistant Professor of Biochemistry
Biochemistry Department
Faculty of Science
Ain Shams University

Biochemistry Department
Faculty of Science
Ain Shams University
2014

Declaration

I declare that this thesis has been composed and the work recorded here has been done by myself.

It has not been submitted for any other degree at this or any other university.

Mustafa Mahmoud

Dedication

In the name of Allah most gracious most merciful, Praise be to God, the Cherisher and Sustainer of the worlds.

I dedicate this thesis to my family and many friends. A special feeling of gratitude to my loving parents whose words of encouragement and push for tenacity ring in my ears, thank you very much for your love, endless support and encouragement. My brother and sister have never left my side and are always there for me thanks a lot.

I also dedicate this thesis to my many friends who have supported me throughout the process. I will always appreciate what they have done for me throughout the entire master program.

ACKNOWLEDGEMENT

الحمد لله رب العالمين

Praise is to Allah, the lord of all creatures who taught man the whole science and the names of all things.

This thesis is prepared to fulfill the requirement in the Master of Science degree in the Faculty of Science in Ain Shams University. The thesis work was carried out during the period from 2011 to 2014.

This Master would never have been completed without the efforts of several people who really I appreciate their instructive support.

I am greatly indebted to **Prof. Dr. Amina M. Medhat**, Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, Egypt and my supervisor for giving me the opportunity to perform this work under excellent working atmosphere, her encouragement, patience and interest that she showed in my work during the study period.

My special thanks are due to **Prof. Dr. AbdelFattah M. Badawi**, Professor of Applied Surfactant Chemistry, Egyptian Petroleum Research Institute, Egypt for his kind supervision, moral support, instructive guidance and kind advice. Furthermore I would like to thank him for introducing me to the topic, preparing and providing the compounds used in this study as well for the support all on the way.

No words can express my sincere gratitude to **Dr. Eman I. Kandil**, Assistant Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, Egypt for her guidance and help during the preparation for this work, assisting me during the research activities, for creative ideas, and especially for the careful reading of my thesis. I found her a true academician and I will always remember her with respect.

Special thanks are extended to **Prof. Dr. Somaya Z. Mansour**, Professor of Biochemistry, National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt for her participation in this study, her encouragement and her great support during my practical work. I closely worked with her throughout the all stages of this study and I found in her a decent, kind and a greatly respective person. I would like to thank her very much for her guide during the practical work.

Great thanks to **Prof. Dr. Adel M. Baker**, Professor of Pathology, Department of Pathology, Faculty of Veterinary Medicine, Cairo university, Egypt for his effort and assistance with histopathological studies

I am grateful to all my colleagues for providing a good working environment, working assistance whenever necessary, and for sharing their scientific knowledge.

Mustafa Mahmoud

Contents

Item No.	Subject	Page
	List of Abbreviations	I
	List of Figures	III
	List of Tables.	VII
	Abstract	X
	Aim of the Work	XI
1.	Review of Literature	1
1.1	<i>Cancer</i>	1
1.1.1	Carcinogenesis	4
1.1.2	Free radicals and antioxidants in oxidative stress-induced cancer	6
1.1.3	Cancer and the tumor microenvironment	8
1.1.4	Sustaining proliferative signaling	9
1.1.5	Evading growth suppressors	10
1.1.6	Resisting cell death	13
1.1.7	Inducing angiogenesis	17
1.1.8	Cancer metastasis	19
1.1.9	Reprogramming of energy metabolism	21
1.1.9.1	Hypoxia	21
1.1.9.2	Warburg effect	22
1.1.10	Evading immune destruction	24

Item No.	Subject	Page
1.2	Nanotechnology	<i>26</i>
1.2.1	Nanomedecine and cancer	28
1.3	Zinc an essential microenvironment	<i>35</i>
1.3.1	Functions of zinc	36
1.3.2	Role of zinc in cancer	38
1.3.3	Zinc and tumor supressor genes	41
1.3.4	Zinc and immune functioning	43
1.3.5	Zinc nanoparticles	44
1.4	Ionic liquid	<i>47</i>
2.	Materials and Methods	52
2.1	Materials	<i>52</i>
2.1.1	Chemical compounds	52
2.1.2	Tumor line	53
2.1.3	Tumor induction	53
2.1.4	Experimental animals	53
2.2	Methods	<i>55</i>
2.2.1	In vitro studies	55
2.2.1.1	Viability tests	55
2.2.2	In vivo studies	59
2.2.2.1	Determination of LD ₅₀ using experimental animals	59
2.2.2.2	Collection of samples	61

Item No.	Subject	Page
2.2.2.3	Biochemical methods	62
2.2.2.4	Histopathological studies	86
2.3	Statistical analysis	<i>86</i>
3.	Results	87
3.1	In vitro studies	<i>87</i>
3.1.1	Viability tests	87
3.1.1.1	Trypan blue exclusion method	87
3.1.1.2	Cytotoxicity assay using crystal violet	91
3.2	In vivo studies	94
3.2.1	Acute toxicity studies	94
3.2.1.1	Determination of median lethal dose value	94
3.2.2	Biochemical parameters	95
3.2.2.1	Determination of oxidative stress	95
3.2.2.2	Liver function tests	116
3.2.2.3	Kidney function tests	122
3.2.2.4	Tumor necrosis factor alpha	125
3.2.2.5	Interleukin-10	128
3.2.3	Histopathological findings	131
3.2.3.1	Liver tissue	131
3.2.3.2	Tumor tissue (Thigh)	135

Item No.	Subject	Page
4.	Disscussion	138
5.	Summary and Conclusion	162
6.	References	166
	Arabic Abstract	1
	Arabic Summary	4

LIST OF ABBREVIATIONS

ALT Alanine aminotransferase

AST Aspartate aminotransferase

ATP Adenosine triphosphate

CAT Catalase

CDKs Cyclin-dependent kinases

CPT Camptothecin

EAC Ehrlich ascites carcinoma

ECM Extracellular matrix
ER Estrogen receptor

ESC Ehrlich solid carcinoma

GPx Glutathione peroxidise

GSH Reduced glutathione

HIF Hypoxia-inducible factor

 IC_{50} The half maximal inhibitory concentration

ILs Ionic liquids

LD₅₀ Median lethal doseLP Lipid peroxidationMDA Malondialdehyde

NF-κB Nuclear factor kappa B

NK Natural killer cells

NP Nanoparticle

p53 Tumor protein 53

RNS Reactive nitrogen species
ROS Reactive oxygen species
RPM Revolutions per minute

RPMI Roswell Park Memorial Institute medium

medium Roswell Faik Melliollar institute is

SAR Structure–activity relationship
SOD Superoxide dismutase

TEM Transmission electron microscopy

TNF-α Tumor necrosis factor alpha

TP53 Tumor protein 53 gene

VACSERA The holding company for biological products and vaccines

VEGF-A Vascular endothelial growth factor-A

LIST OF FIGURES

Figure	Title	Page
Figure (1a)	Trihexyl (tetradecyl) phosphonium chloride ionic liquid structural formula	52
Figure (1b)	Zinc nanoparticles suspension in phosphonium ionic liquid using transmission electron microscope.	52
Figure (2)	Standard curve of mouse TNF-alpha	84
Figure (3)	Standard curve of mouse Interleukin -10	85
Figure (4)	Cytotoxic activity of Zn np against EAC	88
Figure (5)	Cytotoxic activity of IL against EAC	89
Figure (6)	Cytotoxic activity of Zn np suspension in an IL against EAC	90
Figure (7)	Cytotoxic activity of Zn np against HepG2 cell line	91
Figure (8)	Cytotoxic activity of IL against HepG2 cell line	92
Figure (9)	Cytotoxic activity of Zn np suspension in an IL against HepG2 cell line	93
Figure (10)	Percent change from control of blood CAT and SOD levels for different groups	97
Figure (11)	Percent change from control of blood GSH and GPx levels for different groups	100
Figure (12)	Percent change of blood antioxidants levels for tumor bearing mice under different treatment conditions compared to EAC group	100
Figure (13)	Percent change from control of liver CAT and SOD levels for different groups	103
Figure (14)	Percent change from control of liver GSH and GPx levels for different groups	106
Figure (15)	Percent change of liver antioxidants levels for tumor bearing mice under different treatment conditions compared to EAC group	106