Effect of a new prebiotic supplemented formula on growth parameters & stool microbiology of term infants

Thesis

Submitted for partial fulfillment of the master degree in **Pediatrics**

By Nesreen Nagy Hassan

M.B.B.Ch.

Faculty of Medicine - Ain shams university (2005)

Supervised by

Prof. Dr. Adham Mohamed Hegazy

Professor of Pediatrics
Faculty of Medicine - Ain shams university

Prof. Dr. Ghada Abdelwahed Ismail

Professor of Clinical Pathology Faculty of Medicine - Ain shams university

Dr. Marwa Talaat El Deeb

Lecturer of Pediatrics
Faculty of Medicine - Ain shams university

Faculty of Medicine Ain Shams university 2012 تأثير صيغة جديدة للبن الأطفال مضاف إليها بريبايوتيكس على مقاييس النمو والكائنات الدقيقة في البراز للأطفال كاملى النمو

رسسالة توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من الطبيبة/ نسرين ناجى حسن بكالوريوس الطب والجراحة العامة (2005) كلية الطب جامعة عين شمس

تحت إشراف

الأستاذة الدكتور / أدهم محمد الطاهرى

أستاذ طب الأطفال كلية الطب حامعة عين شمس

الأستاذة الدكتورة /غادة عبدالواحد اسماعيل

استاذ الباثولوجيا الأكلينيكيه كلية الطب – جامعة عين شمس

الدكتورة / مروه طلعت الديب

مدرس طب الأطفال كلية الطب -جامعة عين شمس

> كلية الطب جامعة عين شمس 2012

LIST OF CONTENTS

List of Contents	i
List of Abbreviations	iii
List of Figures	v
List of Tables	vii
Introduction	1
Aim of the work	5
Review of Literature	7
Breast Feeding	
Infant Formula	13
Prebiotics	25
Gut Mucosal Barrier	38
Patients and methods	55
Patients	55
Methods	59
Statistical Methods	64
Results	65
Discussion	79
Summary & Conclusion	•••••
Recommendations	97
References Error! Bookmark not defined.	

LIST OF ABBREVIATIONS

AAP	American Academy of Pediatrics
FDA	American Food and Drug Administration
ARA	arachidonic acid
ADHD	Attention deficient hyperactive disease
CD	celiac disease
CD	Cluster of differentiation
CpG	Coupled protein G
DP	Degree of polymerization
DHA	docosahexaenoic acid
FAE	Follicle associated epithelium
FOS	Fructo-oligosaccharide
GOS	Galacto-oligosaccharide
GRAS	Generally Recognized As Safe
GALT	Gut associated lymphoid tissue
HSP _S	heat shock proteins
НМО	Human milk oligosaccharide
IL	Interleukin
INF-	Interferon
IEL	Intraepithelial lymphocytes
LP	Lamina propria
LPS	Lipopolysaccharides
NF-κB	Nuclear factor κB

$\boldsymbol{LIST\ OF\ ABBREVIATIONS\ (CONT.)}$

NOD	Nucleotide oligomerization domain
NEC	Necrotizing enterocolitis
NLR	NLR, NOD-like receptor;
OME	Otitis media with effusion
PP	Payer's Patches
PAMP	Pathogen-associated molecular patterns
PRR	Pattern recognition receptors
SCFA	Short chain fatty acids
TLR	Toll-like receptor
SIDS	sudden infant death syndrome
TNF-α	Tumor necrosis factor-alpha
WHO	World Health Organization

List of Tables

Table	Title	Page
1	Drugs Usually Contraindications during Breast feeding	19
2	Summary and conclusion on the prebiotic effect of various oligosaccharides	33
3	Potential Mechanisms of Prebiotic-Induced Immune Alterations	37
4	Main Areas of Pathophysiological Interest in Which the Effects of Prebiotics Have Been Investigated	38
5	Shows comparison among the same group as regard weight (kg)	54
6	Comparison among the same group as regard length (cm)	55
7	Comparison among same group as regard head circumference (cm)	56
8	Comparison among same group as regard colony count of lactobacillus in stool (mm ³)	57
9	Comparison among same group as regard number of bifidobacteria in stool (mm ³).	58
10	Comparison between different groups as regard mode of delivery	59
11	Comparison between different groups as regard sex.	60
12	Comparison between different groups as regard gestational age (wks)	61
13	Comparison between different groups as regard birth weight (kg).	62
14	Comparison between different groups as regard birth weight percentile	63
15	Comparison between different groups as regard weight at 45 days (kg)	65
16	Comparison between different groups as regard	66

	weight percentile at 45days.	
17	Comparison between different groups as regard weight at day 90 (kg)	68
18	Comparison between different groups as regard weight percentile at 90 days	69
19	Comparison between different groups as regard length at birth (cm)	71
20	Comparison between different groups as regard Length percentile at birth	72
21	Comparison between different groups as regard length at 45 days (cm)	74
22	Comparison between different groups as regard length percentile at 45 days	75
23	Comparison between different groups as regard length at 90 days (cm)	77
24	Comparison between different groups as regard length percentile at 90 days	78
25	Comparison between different groups as regard head circumference at birth (cm)	80
26	Comparison between different groups as regard head circumference percentile at birth	81
27	Comparison between different groups as regard head circumference at 45 days (cm)	83
28	Comparison between different groups as regard head circumference percentile at 45 days	84
29	Comparison between different groups as regard head circumference at 90 days (cm).	86

30	Comparison between different groups as regard	87
	head circumference percentile at 90 days	
31	Comparison between different groups as regard	89
	colony count of lactobacillus in stool (m ³) at 45	
	days.	
32	Comparison between different groups as regard	90
	colony count of lactobacillus in stool (m ³) at 90	
	days.	
33	Comparison between different groups as	91
	regard colony count of bifidobacteria in stool	
	(m ³) at 45days	
34	Comparison between different groups as regard	92
	colony count of bifidobacteria in stool (m ³) at	
	90 days	
35	Comparison between different groups as regard	93
	eczema at 45days	
36	Comparison between different groups as	94
	regard eczema at 90 days.	
37	Comparison between different groups as regard	96
	upper respiratory tract infection	
	at 45 days	
20	0 1100	0.7
38	Comparison between different groups as regard	97
	upper respiratory tract infection	
	at 90 days	

List of Figures

Figure	Title	Page
1	Factual and Hypothetical Effects of Short Chain Fatty	34
	Acids (SCFAs) on Colonic Morphology and Function	

2	Diagram showing the different cellular components of the mucosal immune system	41
3	Overview of the human colonic microbiota	45
4	TLRx ligand diversity	48
5	Host–Microbe Interaction	49
6	Comparison among the same group as regard weight	54
7	Shows comparison among the same group as regard length	55
8	Shows comparison among same group as regard head circumference	56
9	Comparison among same group as regard number of lactobacillus in stool	57
10	Comparison among same group as regard number of bifidobacteria in stool	58
11	Comparison between different groups as regard mode of delivery.	59
12	Comparison between different groups as regard sex.	60
13	Comparison between different groups as regard gestational age	61
14	Comparison between different groups as regard birth weight	62
15	Comparison between different groups as regard BW percentile	64
16	Comparison between different groups as regard weight at 45 days	65
17	Comparison between different groups as regard weight percentile at 45days	67
18	Comparison between different groups as regard weight at day 90 (kg)	68
19	Comparison between different groups as regard weight percentile at 90 days	70

20	Comparison between different groups as regard length at birth (cm)	71
21	Comparison between different groups as regard Length percentile at birth	73
22	Comparison between different groups as regard length at 45 days (cm)	74
23	Comparison between different groups as regard length percentile at 45 days	76
24	Comparison between different groups as regard length at 90 days (cm)	77
25	Comparison between different groups as regard length percentile at 90 days	79
26	Comparison between different groups as regard head circumference at birth (cm)	80
27	Comparison between different groups as regard head circumference percentile at birth	82
28	Comparison between different groups as regard head circumference at 45 days (cm)	83
29	Comparison between different groups as regard head circumference percentile at 45 days	85
30	Comparison between different groups as regard head circumference at 90 days (cm).	86
31	Comparison between different groups as regard head circumference percentile at 90 days	88
32	Comparison between different groups as regard colony count of lactobacillus in stool (m³) at 45 days.	89
33	Comparison between different groups as regard	90

	2	1
	colony count of lactobacillus in stool (m³) at 90 days.	
34	Comparison between different groups as regard colony count of bifidobacteria in stool (m³) at 45days	91
35	Comparison between different groups as regard colony count of bifidobacteria in stool (m³) at 90 days	92
36	Comparison between different groups as regard eczema at 45days	93
37	Comparison between different groups as regard eczema at 90 days.	95
38	Comparison between different groups as regard upper respiratory tract infection at 45 days	96
39	Comparison between different groups as regard upper respiratory tract infection at 90 days	98

INTRODUCTION

Bacterial colonization of the sterile neonatal gut starts soon after birth and consists predominantly of bifidobacteria and lactobacilli. These pioneer bacteria modulate gene expression in host epithelial cells, create a favorable permanent habitat for themselves, and prevent growth of harmful bacteria. Early colonization is thus a critical determinant of the permanent gut flora that may beneficially affect the individual's health throughout life by preventing conditions such as colon cancer, inflammatory bowel disease, allergic diseases, diabetes, and obesity (*Neu et al.*, 2007).

milk Human contains various "oligosaccharide prebiotics" that promote the beneficial gut flora, making breastfeeding very important especially in the first month of life (Lara-Villoslada et al., 2007). However, breastfeeding may not be possible for various reasons. Formula feeding at such a critical stage of development may result in failure to develop normal gut flora and colonization with potential pathogens such as staphylococci and Escherichia coli (Harmsen et al., 2000). Supplementation of formula milk with prebiotic oligosaccharides such as galactose oligosaccharide (GOS) and fructose oligosaccharide (FOS) is therefore being explored to overcome this problem (Roberfroid et al., 2007).

Prebiotic oligosaccharides are short-chain carbohydrates with a degree of polymerization between 2 and 60 and are nondigestible by human or animal digestive systems. The defining property of prebiotics is their ability to selectively stimulate the growth of bifidobacteria and lactobacilli in the large intestine (*Cummings et al.*, 2002). The prebiotic oligosaccharides in turn are fermented by the gut flora, resulting in the release of hydrogen and carbon dioxide gas and short-chain fatty acids such as butyrate. The short-chain fatty acids reduce the pH of the stools, resulting in more acidic

Introduction and Aim of The Work

stools, which in turn leads to a mild laxative effect with softening and increased frequency of stools. This could be beneficial in preventing the constipation that is frequently observed in formula-fed infants. In addition, the acidic pH prevents growth of pathogens, promotes further growth of healthy organisms, and promotes integrity of colonic epithelial cells (*Shripada Rao et al.*, 2009).

AIM OF THE WORK

The aim of our study is to evaluate the effect of a new infant formula supplemented with (o.8 g/100 ml) prebiotics (galacto-oligosaccharide & fructo-oligosaccharide in a ratio 9:1) on intestinal micro-flora (Bifidobacteria, Lactobacilli) &it's subsequent effect on term infant's growth & imunity compared with human Milk and a standard infant formula without prebiotics.

Chapter I BREASTFEEDING

Breastfeeding is the feeding of an infant or young child with breast milk directly from human breasts rather than from a baby bottle or other container. Babies have a sucking reflex that enables them to suck and swallow milk. Most mothers can breastfeed for six months or more, without the addition of infant formula or solid food.

Human breast milk is the most healthful form of milk for human babies (*Picciano*, 2001). There are a few exceptions, such as when the mother is taking certain drugs or is infected with tuberculosis or HIV. Breastfeeding promotes health, helps to prevent disease and reduces health care and feeding costs (*Yeo et al.*, 2005). In both developing and developed countries, artificial feeding is associated with more deaths from diarrhea in infants (*Horton et al.*, 2000). Experts agree that breastfeeding is beneficial, but may disagree about the length of breastfeeding that is most beneficial, and about the risks of using artificial formulas (*Baker*, 2003).

Both the World Health Organization (WHO) and the American Academy of Pediatrics (AAP) recommend exclusive breastfeeding for the first six months of life and then supplemented breastfeeding for up to one (AAP) or two years or more (WHO). Exclusive breastfeeding for the first six months of life "provides continuing protection against diarrhea and respiratory tract infection" that are more common in babies fed formula. The WHO and AAP both stress the value of breastfeeding for mothers and children (*Gartner LM*,2005). While recognizing the superiority of breastfeeding, regulating authorities also work to minimize the risks of artificial feeding (*Baker*, 2003).