

Predictive Modeling and Optimization of Industrial Penex Isomerization unit

By

Mohanad Magdy Menoufi Mohamed Said

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Chemical Engineering

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY
GIZA, EGYPT

2015

"Predictive Modeling and Optimization of Industrial Penex Isomerization unit"

By

Eng. Mohanad Magdy Menoufi Mohamed Said
A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Chemical Engineering

Under the supervision of

Prof. Dr. Tarek Mohamed Mostafa
Chemical Engineering Department
Faculty of Engineering
Cairo University

Dr. Tamer Samir Mohamed
Chemical Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY
GIZA, EGYPT

2015

"Predictive Modeling and Optimization of Industrial Penex Isomerization unit"

By

Eng. Mohanad Magdy Menoufi Mohamed Said

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Tarek Mohamed Mostafa, Thesis Main Advisor Chemical Engineering Dept., Cairo University, Faculty of Engineering.

Prof. Dr. Mai Mohamed Kamal El-Din, Internal Examiner Chemical Engineering Dept., Cairo University, Faculty of Engineering.

Eng. Mohamed Ibrahim El-Sayed, External Examiner

Manager of Process Engineering and Studies Department, Process

Technology Division, (ENPPI)

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

Engineer: Mohanad Magdy Menoufi Mohamed Said.

Date of Birth: 19/11/1988.

Nationality: Egyptian.

E-mail: mohanad.magdy12@yahoo.com.

Phone: +201001893289.

Address: 76 Mostafa Hafez, Gesr El Suez, Cairo.

Registration date: 1/3/2011.

Awarding date: / / 2015

Degree: Master of Science

Department: Chemical Engineering Department

Supervisors:

Prof. Dr. Tarek Mohamed Mostafa.

Dr. Tamer Samir Mohamed

Examiners:

Prof. Dr. Mai Mohamed Kamal El Din (Internal Examiner)

Prof. Dr. Tarek Mohamed Mustafa. (Thesis Main Advisor)

Eng. Mohamed Ibrahim El Sayed. (External Examiner)

Department Manager of Process Engineering and Studies Department

(ENPPI) - Cairo -Egypt

Title of Thesis:

Predictive Modeling and Optimization of Industrial Penex Isomerization unit

Keywords:

Isomerization, Penex Process, Kinetic Modeling, Predictive Modeling, Optimization

Summary:

This work presents a model for UOP Hydrogen Once Through (HOT) Penex Process using Aspen HYSYS V7.3. The model relies on routinely taken samples of process streams and normal operating conditions of Penex Unit located in Cairo Oil Refinery. Acquired data sets from the industrial unit have been tested and screened to ensure data validity for building the model and avoiding erroneous results. A reaction network with 20 reactions and 19 components has been used for the reactors model. In addition, rigorous tray by tray simulation of isomerate stabilizer has been utilized to match the performance of plant stabilizer close enough. The model has then been used for studying the effects of process variables on plant performance. Finally, the model has been used in optimizing the operating conditions of the process. Results from optimization scheme showed that considerable savings in isomerate yield and fuel consumption could be accomplished.

Acknowledgement

First of all, I would like to thank Allah for helping me accomplish this work.

I would also like to express my gratitude for my supervisors. My sincere thanks to Dr.Tarek Mostafa for his guidance and valuable advices .Special thanks to Dr.Tamer Samir for his efforts and constant support during the course of this work. They will always be remembered.

My deepest appreciation for my family, especially my mother for their encouragement.

Also, I would like to thank all engineers in Isomerization Sector of Cairo Oil Refining Co. for their cooperation.

Finally, I would like to thank and apologize to anyone who assisted in completing this work and I forgot to mention them.

Dedication

For those who are courageous enough to take risks and make sacrifices seeking the best for their families.

Table of Contents

Acknowledgement	I
Dedication	II
Table of Contents	III
List of Tables	V
List of Figures	VII
Nomenclature	X
Abstract	XII
Chapter 1: Introduction	1
1.1 Gasoline	3
1.2 Gasoline Specifications	4
1.2.1 Reid Vapor Pressure and boiling range	4
1.2.2 Octane Number	5
1.3 Octane Upgrading Processes	6
1.3.1 Naphtha Reforming	7
1.3.2 Alkylation	7
1.3.3 Light Naphtha Isomerization	7
Chapter 2: Literature Review	9
2.1 Isomerization Catalysts	10
2.1.1 Zeolite Catalysts	11
2.1.2 Chlorinated Alumina Catalysts	11
2.1.3 Sulfated Zirconia Catalysts	12
2.2 Isomerization Kinetic Modeling	13
2.3 Penex Process	14
2.3.1 Process Description	14
2.3.2 Process Chemistry	17
2.3.3 Process Contaminants	19
2.3.4 Process Parameters	20
Chapter 3: Model Development	22
3.1 Reactor Model	23
3.2 Industrial Data Gathering and Arrangement	27
3.3 C ₇₊ De-lumping	27
3.4 Data Screening	31
Chapter 4: Model Calibration and Validation	35
4.1 Reactor Model Calibration and Parameter Estimation	36

4.1.1 Lead Reactor Calibration	36
4.1.2 Average Activity Parameters	37
4.1.3 Lag Reactor Calibration	40
4.1.4 Model Validation	42
4.1.5 Testing Model Prediction Power	45
4.2 Feed Pre-heating	46
4.3 Stabilizer Model	49
4.3.1 Tray Efficiency Vs Overall Column Efficiency	49
4.3.2 Column Specifications	53
Chapter 5: Process Variables	56
5.1 Reactors' Inlet Temperature	57
5.2 Hydrogen/Hydrocarbon mole ratio	60
5.3 Feed rate (LHSV)	63
5.4 Feed Composition	63
5.4.1 Methyl Cyclo Pentane and Cyclo Hexane	63
5.4.2 Benzene	66
Chapter 6: Process Optimization	69
6.1 Reactors' Temperatures Optimization	70
6.2 Hydrogen: Hydrocrabon mole ratio	71
6.3 Model Application To Process Optimization	71
Chapter 7: Discussion, Conclusions and Recommendations	77
Bibliography	81
Appendix A: Reactors' Models Calibration Results	84
Appendix B: Model Predictions Vs Plant Performance	91
Appendix C: Heat and Material Balance	95
Appendix D: Equipment Specifications	103

List of Tables

Table 1-1: Relation between Minimum Ambient Temperature and % Distilled Liquid at 70°C for Acceptable Performance
Table 1-2: Relation between Min. Ambient Temp. and 90% Distilled Temp. for Acceptable
Performance 5
Table 1-3: Max. Allowable RVP at Ambient Temperature5
Table 1-4: Variables Effects on Octane Requirements
<u>Table 2-1: Typical RON of Isomerate with Different Recycle Schemes (Feed (RON) =69)15</u>
Table 2-2:RON Of Normal and Iso-Paraffins
<u>Table 3-1: Kinetic Parameters Included in Reactor Model</u>
<u>Table 3-2: Typical Component Analysis of Feed and Product streams in Penex Unit28</u>
Table 3-3: PNA Composition of C ₇₊ Fraction
<u>Table 3-4:Available and Calculated Properities of C₇₊ Fraction in Feed and Product31</u>
<u>Table 3-5: Estimated Composition of C₇₊ Fraction in Feed and Product</u>
Table 3-6: Reactors' Dimensions and Catalyst Properties
Table 4-1: Measurements Included in Model Calibration
Table 4-2: Applied Weighing Factors
<u>Table 4-3: Applied Bounds on Activity Parameters</u>
Table 4-4: Estimated Average Activity Parameters for Lead and Lag Reactors
<u>Table 4-5: Typical overall efficiency values for some refinery fractionators</u> 51
Table 4-6: Components Recovery % in Isomerate Stabilizer
<u>Table 4-7: Selected Specifications for Stabilizer Model</u>
Table 5-1: Average Composition of Feed Naphtha and Make-Up Gas during Study Period58
Table 5-2: Operating Scheme for Lead and Lag Reactors
Table 6-1: Operating Conditions of the Unit at the Base Operating Point and Limit Bounds
Induced by Process Licensor
Table 6-2: Process Performance at Base and Optimum Operating Point

Table 6-3: Net Heating Value of Make-up Gas	76
Table A.1:Model Calibration Results	85
Table B.1:Model Predictions Vs Plant Performance	92
Table C.1:Process Streams Conditions	96

List of Figures

Figure 1-1: Distribution of Refinery Capacities
Figure 1-2: Typical Block Flow Diagram of a Coking Refinery
Figure 2-1: Effect of Temperature on Isomers Yield
Figure 2-2: Comparison of the Activity of Different Isomerization Catalysts11
Figure 2-3: Process Flow Diagram of Zeolite Catalyst Based Isomerization12
Figure 2-4: Process Flow Diagram of Chlorinated Alumina Based Isomerization12
Figure 2-5: Process Flow diagram of Sulfated Zirconia Based Isomerization13
Figure 2-6: UOP Hydrogen Once Through Penex Process
Figure 2-7: Penex Process with Deishexanizer
Figure 2-8:Penex/Molex Process with Recycle of Normal Paraffins
Figure 2-9: Penex Process with Normal Paraffins and Methyl Pentanes Recycle16
Figure 3-1: HYSYS Isomerization Model Reaction Network24
Figure 3-2: Overall Modeling Strategy
Figure 3-3: Variation of C7+ Feed Content
Figure 3-4: Mass Balance Error For Acquired Data Sets
Figure 3-5: Hydrogen Balance Error For Acquired Data Sets
Figure 4-1: Estimated Activity Parameters For Lead Reactor (A) Global
Activity;(B)Isomerization Activity;(C) Hydrocracking Activity;(D) Hydrogenation Activity;(E)
Ring Opening Activity;(F) Heavy Activity41
Figure 4-2:Estimated Activity Parameters for Lag Reactor (A) Global Activity;(B)Isomerization
Activity;(C)Hydrocracking;(D)Hydrogenation Activity;(F)Ring Opening ;(F)Heavy activity .43
Figure 4-3: Plant versus Model yields with data sets used for lead reactor calibration44
Figure 4-4: Plant versus Model yields with data sets used for lag reactor calibration44
Figure 4-5: Plant versus Model yields for 4 months after calibration (Lead Reactor)45
Figure 4-6: Plant versus Model yields for 4 months after calibration (Lag reactor)46
Figure 4-7: PROII Pre-Heat Train Flow Sheet

<u>Figure 4-8: Stabilizer Temperature Profile</u>
Figure 4-9: Penex Isomerization Unit Model
Figure 5-1:A- Effect of Lead Reactor Inlet Temperature on RON; B- Variation of (I-C5/C5)%
with Lead Reactor Inlet Temperature; C- Variation of (2,2DMB/C6)% with Lead Reactor Inlet
Temperature; D- Variation of (2,3DMB/C6)% with Lead Reactor Inlet Temperature; E- Effect
of Lead Reactor Inlet Temperature on Hydrogen Consumption in Lead Reactor; F- Effect of
<u>Lead Reactor Inlet Temperature on Isomerate Yield. Lag Reactor Inlet Temperature = 120 °C</u> ,
<u>H₂</u> : HC = 0.1565, A6 = 2.99 wt. %, LHSV = 1.15 hr ⁻¹
Figure 5-2: A- Effect of Lag Reactor Inlet Temperature on RON; B- Variation of (I-C5/C5)%
with Lag Reactor Inlet Temperature; C- Variation of (2,2DMB/C6)% with Lag Reactor Inlet
Temperature; D- Variation of (2,3DMB/C6)% with Lag Reactor Inlet Temperature; E- Effect of
Lead Reactor Inlet Temperature on Hydrogen Consumption in Lag Reactor; F- Effect of Lag
$\underline{Reactor\ Inlet\ Temperature\ on\ Isomerate\ Yield.\ Lead\ Reactor\ Inlet\ Temperature\ =\ 124\ ^{\circ}C,\ H_2:HC}$
= 0.1565, A6 = 2.99 wt%, LHSV = 1.15 hr ⁻¹ 61
Figure 5-3:A- Effect of H2:HC Ratio on Isomerate Yield; B- Effect of H2:HC Ratio on RON of
Isomerate; C- Effect of H2:HC Ratio on PIN. Lead Reactor Inlet Temperature = 124°C, Lag
<u>Reactor Inlet Temperature = 120 °C, A6 = 2.99 wt%, LHSV = 1.15 hr⁻¹62</u>
Figure 5-4:A- Effect of Feed Rate (LHSV) on PIN; B- Effect of Feed Rate (LHSV) on Isomerate
<u>Yield. Lag Reactor Inlet Temperature = 120 °C, H2:HC = 0.1565, A6=2.99wt%63</u>
Figure 5-5:A- Effect of Feed MCP Content on PIN; B- Effect of Feed CH Content on PIN; C-
Effect of Feed MCP Content on RON; D- Effect of Feed CH Content on RON; E- Effect of Feed
MCP Content on Isomerate Yield; F- Effect of Feed CH Content on Isomerate Yield; G- Effect
of Feed MCP Content on Total Hydrogen Consumption; H- Effect of Feed CH Content on Total
Hydrogen Consumption; I:- Effect of Feed MCP Content on Hydrogen Consumption in Lag
Reactor; J- Effect of Feed CH Content on Hydrogen Consumption in Lag Reactor. Lead Reactor
Inlet Temperature = 124 °C, Lag Reactor Inlet Temperature = 120 °C, LHSV = 1.15hr ⁻¹ 64
Figure 5-6:A- Variation of Feed Benzene Content; B- Effect of Feed Benzene Content on Lead
Reactor Temperature Rise; C- Effect of Feed Benzene Content on Isomerate RON; D- Effect of
Feed Benzene Content on PIN in Lead Reactor; E- Effect of Feed Benzene Content on Isomerate
Yield; F- Effect of Feed Benzene Content on Hydrogen Consumption in Lead Reactor. Lead
$\underline{Reactor\ Inlet\ Temperature} = 124\ ^{\circ}C,\ Lag\ Reactor\ Inlet\ Temperature = 120\ ^{\circ}C,\ LHSV = 1.15\ hr^{-1}$
68
Figure 6-1: Equilibrium i-C5/C5 Ratios in Vapor and Liquid Phases71

Figure 6-2: Variation of Isomerate Yield with Reactors Inlet Temperatures73
<u>Figure 6-3: Variation of Paraffin Isomerization No.with Reactors Inlet Temperatures</u>
Figure 6-4: Variation of Isomerate RON with Reactors Inlet Temperatures74

Nomenclature

A = Exchanger Heat Transfer Area

ASTM=American Society For Testing And Materials

A6 = Benzene

C1 = Methane

C2 = Ethane

C3 = Propane

i-C4 = Isobutane

n-C4 = Normal Butane

i-C5 = Isopentane

n-C5 = Normal Pentane

n-C6 = Normal Hexane

n-C7 = Normal Heptane

CH = Cyclo Hexane

2,2-DMB = 2,2-dimethylbutane

2,3-DMB = 2,3-dimethylbutane

E = Overall Column Efficiency

ETBE = Ethyl Tertiary Butyl Ether

FCC = Fluid Catalytic Cracking

 $F_T = LMTD$ Correction Factor

H factor_i = Weight fraction of Hydrogen in component i

I = Parameter for Calculating Refractive Index at 20°C

Isomerate = Liquid Product of Isomerization Process

LHSV = Liquid Hourly Space Velocity

LHV = Low Heating Value

m = Parameter Calculated From Refractive Index and Molecular Weight

MBP7 = Multi Branched Heptanes

MCH = Methyl Cyclohexane

MCP = Methyl Cyclopentane

MON = Motor Octane No.

2MP = 2-Methyl Pentane

3MP = 3-Methyl Pentane

 $M_w = Molecular Weight$

MTBE = Methyl Tertiary Butyl Ether

 $n = Refractive Index at 20^{\circ}C$

5N5 = Cyclopentane

5N7 = Five Ring, Seven Carbon Naphthene

6N7 = Six Ring, Seven Carbon Naphthene

NP7 = Normal Heptane

PIN = Paraffin Isomerization Number = i-C5/C5 + 2,2-DMB/C6 + 2,3-DMB/C6

PON = Posted Octane No.

PSA = Pressure Swing Adsorption

Q = Duty

Reformate = Catalytic Naphtha Reforming Liquid Product

RON = Research Octane No.

RVP = Reid Vapor Pressure

SBP7 = single branched heptanes

SG = Specific Gravity

TAME = Tertiary Amyl Methyl Ether

∆Tmodel = Temperature Rise in Reactor Model

 Δ Tplant = Temperature Rise in Plant Reactor

 $\Delta T_{LM} = \text{Log Mean Temperature Difference (LMTD)}$

U = Overall Heat Transfer Coefficient

VDU = Vacuum Distillation Unit

w_i = Weighing Factor for Component i

X_i = Mole, Volume or Mass Fraction of Component i

Xmodel-i = Mass Fraction of Component i in Model Outlet Stream

Xplant-i = Mass Fraction of Component i in Plant Reactor Outlet Stream

 $x_n = Naphthenes Volume %$

 x_p = Paraffins Volume %

y_n = Actual Concentration of Vapor Leaving Plate n

 y_n^* = Concentration of Vapor in Equilibrium with Liquid Leaving Plate n

 y_{n+1} = Actual Concentration of Vapor Entering Plate n

 ψ = property of a petroleum fraction

 ψ_i = property of a pure component i

 θ = known property of C7+ fraction

 $\eta_M = Murphree Efficiency$

 $\mu = Viscosity$

 α =Relative Volatility