

# Role of Updated Ultrasound in The Assessment of Fetopathy of Diabetic Patients

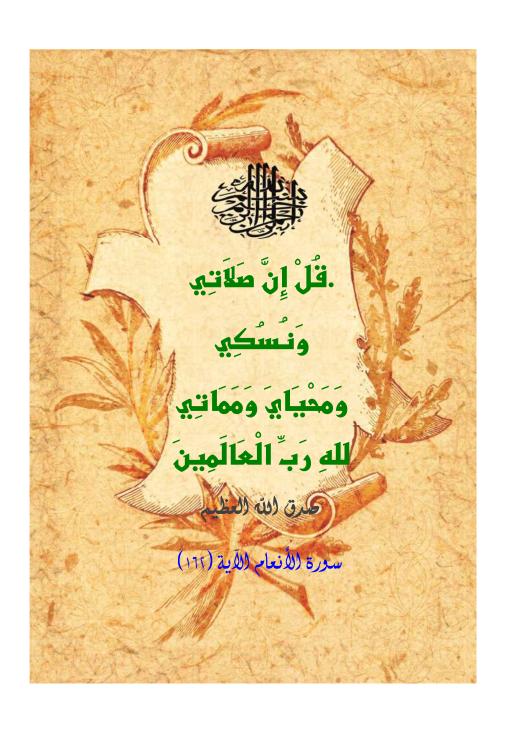


Submitted for partial fulfillment of Master Degree in Radiodiagnosis



Nesma Saied Ahmed

Supervised by


#### Prof.Dr. Dalia Zaki Zidan

Professor of Radiodiagnosis
Ain Shams University
Faculty of Medicine

#### **Dr.Mennatallah Hatem Shalaby**

Assistant Professor of Radiodiagnosis
Ain Shams University
Faculty of Medicine

Faculty of Medicine
Ain Shams University
2018





First and foremost, thanks to ATTAH the most merciful and the most compassionate to whom I relate any success in achieving any work in my life.

Words cannot express my deep gratitude and sincere appreciation to

Prof. Dr . Dalia Zaki Zedan, Professor of Radiodiagnosis, Radiodiagnosis and Nuclear Medicine Department, Faculty of Medicine . Ain Shams University I would like to express my great thanks for the attention she gave to this work from the very beginning to the very end of it. Her invaluable comments and remarks were of utmost importance to me.

I would like to express my very great appreciation to Dr. Mennatallah Hatem Shalaby, Lecturer of Radiodiagnosis, Radiodiagnosis and nuclear medicine department, Faculty of Medicine. Ain Shams University, for her help and valuable advice throughout the performance of this work.

Mesma Saied Ahmed

# List of Contents

# 

.....57

......72

Discussion 93

**Summary and Conclusion**......106

1 الملخص العربي

Results

Cases

### **List of Abbreviations**

| MHG           | Maternal high glucose                     |
|---------------|-------------------------------------------|
| FHI           | fetal hyperinsulinaemia .                 |
| HbA1c         | Glycosted hemoglobin                      |
| $\mathbf{DM}$ | Diabetes Mellitus                         |
| ADA           | American Diabetes Association             |
| <b>SGA</b>    | Small for gestational age                 |
| <b>LGA</b>    | large for gestational age                 |
| <b>IUGR</b>   | Intrauterine growth restriction           |
| <b>IDMs</b>   | Infants of diabetic mothers               |
| NTD           | Neural Tube Defect                        |
| BPD           | Biparietal diameter                       |
| HC            | Head circumference.                       |
| AC            | Abdominal circumference                   |
| $\mathbf{FL}$ | Femur length                              |
| UB            | Urinary bladder                           |
| IVS           | Interventricular septum                   |
| RMW           | Γ Right myocardial wall thickness         |
| LMWI          | Γ Left myocardial wall thickness          |
| UA            | Umbilical artery                          |
| <b>MCA</b>    | Middle cerebral artery                    |
| <b>GDM</b>    | Gestational diabetes mellitus             |
|               | Abdominal subcutaneous tissue thickness   |
|               | Subscapular subcutaneous tissue thickness |
|               | Congenital heart disease                  |
|               | Hypertrophic cardiomyopathy               |
|               | Interventricular septal thickness         |
| <b>HLHS</b>   | Hypoplastic left heart syndrome           |

#### **List of tables**

| Table (1): Fetal complications associated with maternal hyperglycemia according to trimesters of gestation  | 16   |
|-------------------------------------------------------------------------------------------------------------|------|
| Table (2): Type of diabetes distribution of the study group.                                                | . 57 |
| Table (3): Maternal descriptive data of the study group.                                                    | . 58 |
| Table (4): Ultrasound Doppler findings distribution of the study group                                      | .61  |
| Table (5): Amniotic fluid index, fetal weight and subscapular fat thickness                                 | 63   |
| Table (6): Details of delivery distribution of the study group                                              | .66  |
| Table (7): Neonatal outcome distribution of the study group                                                 | .66  |
| Table (8): Other findings distribution of the study group.                                                  | . 67 |
| Table (9): Abnormality fetuses distribution of the study group                                              | . 68 |
| Table (10): Comparison between abnormal fetuses and normal fetuses according to maternal data               | 68   |
| Table (11): Comparison between abnormal fetuses according to ultrasound Doppler findings                    | 69   |
| Table (12): Comparison between abnormal fetuses and normal fetuses according to amniotic fluid index (8-20) | 70   |
| Table (13): Comparison between abnormal fetuses and normal fetuses according to subscapular fat thickness   | 70   |
| Table (14):Comparison between abnormal fetuses and normal fetuses according to details of delivery.         | 71   |
|                                                                                                             |      |

# **List of Figures**

| Fig (1):Biparietal diameter and head circumference A :Axial image        | _  |
|--------------------------------------------------------------------------|----|
| showing the thalami(T) and cavum septum pellucidum (c)                   |    |
| Head circumference measurement                                           |    |
| Fig (2): Transventricular view of the fetal brain                        | 6  |
| Fig (3):Transcerebellar view visualizing, cistern magna (B),2 cerebellar | r, |
| hemispheres (H)and cerebellar                                            | 7  |
| Fig (4):Scanning fetal spines(A)Axial plane, (B)Sagittal plane as        |    |
| (C)Coronal plane                                                         |    |
| Fig (5):Four-chamber view of the heart                                   |    |
| Fig (6):Left ventricular outflow tract                                   |    |
| Fig (7): Right ventricular outflow tract.                                |    |
| Fig (8):M-Mode of the heart showing frequency of the atrial and          |    |
| ventricular contractions                                                 |    |
| Fig (9): Sagittal(A) and transverse(B) US views of the abdomen showing   | _  |
| liver, bowel, UB stomach and spleen                                      |    |
| Fig (10):longitudinal(A) and transverse (B)sections of the kidneys       |    |
| Fig (11):Maternal (M) glucose is transferred to the fetus (F) across the |    |
| placenta down a concentration gradient. Maternal high gluco              |    |
| (MHG) and/or lower fetal glucose will steepen the gradien                |    |
| leading to augmented glucose flux into the fetus                         |    |
| Fig (12): The modified Pederson hypothesis                               |    |
| Fig (13):A photo of a macrosomic newborn of a diabetic mother so         | on |
| after birth)Quoted from Wong etal;2006)                                  | 21 |
| Fig (14): A photo of a newborn with IUGR of a diabetic mother            | 22 |
| Fig (15):Transposition of the great vessels of the heart                 | 23 |
| Fig (16): Anencephalic neonate with antenatal 3D US image                | 24 |
| Fig (17):A :Biparietal diameter and head circumference .B: Heat          | ad |
| circumference measurement                                                | 28 |
| Fig (18): Transventricular and trnascerebellar views of the fetal brain  | 29 |
| Fig (19): Scanning fetal spine (A) Axial plane, (B) Sagittal plane       | 29 |
| Fig (20):Transverse US views of the abdomen showing liver, Stomac        | ch |
| and umbilical vein                                                       | 30 |
| Fig (21):Transverse section of the kidneys                               | 31 |
| Fig (22): Four-chamber view of the heart                                 | 32 |
| Fig (23):measuring vertical pocket of amniotic fluid                     | 33 |
|                                                                          |    |

# List of Figures (Con)

| Fig (24):Doppler US of the umbilical arteries                              | 34 |
|----------------------------------------------------------------------------|----|
| Fig (25):Ultrasound images of ASTT and SSTT. Images with arrows            |    |
| showing the measurement of (A) fetal abdominal subcutaneous                |    |
| tissue thickness (ASTT) and (B) fetal subscapular subcutaneous             |    |
| tissue thickness (SSTT)                                                    |    |
| Fig (26): Anencephaly: Prenatal US done at 18 weeks shows coronal          |    |
| images of the face and orbits with symmetric and complete                  |    |
| absence of the cranial vault and brain (arrow in B), above large           |    |
| and prominent orbits (arrows in A)                                         |    |
| Fig (27):Theinterventricularseptal thickness: (A) 4-chamber view (B)       |    |
| Interventricular septum by M-mode echocardiography. IVST:                  |    |
| interventricular septum; A-A: interventricularseptal thickness             |    |
| during systole; B-B: interventricular septal thickness during              |    |
| diastole; LA: left atrium; LV: left ventricle; RA: right atrium;           |    |
| RV: right ventricle)                                                       |    |
| showing the bidirectional shunting flow                                    |    |
| Fig (29):Hypopalstic left heart syndrome The four chamber is abnormal      |    |
| with a hypoplastic left ventricle. The right ventricle forms the           |    |
| apex of the heart                                                          |    |
| Fig (30):Transposition of the great vessels                                |    |
| Fig (31):US showing double bubble sign of duodenal atresia                 |    |
| Fig (32):Fetal US showing dilated bowel filled with meconium               |    |
| Fig (33):Bilateral enlarged echogenic kidneys without corticomedullary     |    |
| differentiation polycystic kidneys                                         |    |
| Fig (34):US showing Polyhydramnios(quoted from Idris et al;2010)           |    |
| Fig (35):Ultrasound Doppler spectrum of fetal MCA                          |    |
| Fig (36): Pie chart showing BMI diabetes distribution of the study group   |    |
| Fig (37): Pie chart showing glycemic control distribution of the study     |    |
| group                                                                      |    |
| Fig (38): Pie chart showing preeclampsia distribution of the study group   |    |
| Fig (39): Bar chart showing ultrasound Doppler findings distribution of    |    |
| the study group.                                                           |    |
| Fig (40): Pie chart showing amniotic fluid index distribution of the study |    |
| group                                                                      |    |
|                                                                            |    |

# List of Figures (Con)

| Fig (41): Pie chart showing subscapular fat thickness distribution     | of the  |
|------------------------------------------------------------------------|---------|
| study group                                                            | 64      |
| Fig (42): Bar chart showing neonatal outcome distribution of the study | group67 |
| Fig (43): Fetal macrosomia                                             | 72      |
| Fig (44): Fetal macrosomia                                             | 74      |
| Fig (45): Mild form of pyloric stenosis                                | 76      |
| Fig (46): Polyhydramnios                                               | 79      |
| Fig (47): Amputation of one lower limb                                 | 81      |
| Fig (48): Omphalocele                                                  | 83      |
| <b>Fig (49):</b> trisomy 18                                            | 87      |
| Fig (50): IUGR with oligohydramnios                                    | 89      |
| Fig (51): Posterior urethral valve                                     | 91      |

#### Introduction

The number of pregnant women with pre-existing diabetes is increasing, mainly from an increase in type 2 diabetes, but also an increase in type 1 diabetes which may be related to harmful environmental conditions.

Approximately 87.5% of pregnancies complicated by diabetes are estimated to be due to gestational diabetes (which may or may not resolve after pregnancy), with 7.5% being due to type 1diabetes and the remaining5% being due to type 2 diabetes. Thus, the knowledge and management of this condition in pregnancy has become important

(Dabelea, 2009).

The pathogenesis of fetal malformations associated with pre-existing diabetes is poorly understood but may be multifactorial and related to nutrient deficiencies or toxic metabolites. Hyperglycemia, hypoxia, ketone and amino acid abnormalities, and glycosylation of proteins have been reported as potential teratogens that may alter molecular signalling pathways and adversely affect embryogenesis Hyperglycemia, beta-hydroxybutyrate (the major ketoneproduced in ketoacidosis) and somatomedin inhibitors have been associated with neural tube defects (*Gabby and Baschat*, 2015)

Ultrasonography is a non invasive, readily available method to assess and monitor the fetus .Ultrasound surveillance can be a useful tool to supplement clinical evaluation of fetuses in pregnancies complicated by diabetes is also a helpful guide for instituting early therapeutic management for pregnancies complicated by diabetes (*PO-Fan, et.al.,2015*)

Prenatal ultrasound of diabetic patients can detect CNS structural defects as anencephaly, Holoprosencephaly, and spina bifida. Again sonographic imaging remains the standard method to diagnose fetal cardiac abnormalities in diabetic patients where measurements of the thickness of the ventricular walls can reveal myocardial hypoplasia (*Zhiyong and Albert ,2013*).

With the aid of prenatal sonography, selection of medical therapy in diabetic mothers can be judged by detecting the risk of fetal macrosomia which may guide the start of insulin therapy.

On color Doppler studies, The uterine artery reflects the utero-placental circulation while the umbilical artery reflects the feto-placental circulation In long standing diabetes, perfusion is decreased on placental size and the umbilical artery shows increased impedance to blood flow

|          |        |      | $\sim$ |
|----------|--------|------|--------|
| Intr     | •      |      | m i n  |
| ( laataa | ~ d110 | ti a | ااام   |
|          |        |      |        |

which can be assessed with Doppler Ultrasound. (Bano etal., 2010).

The Utility of three-dimensional ultrasound in diabetic pregnant patients is still being established. Fetal bone anomalies are better detected on 3D ultrasound and hence skeletal dysplasia can be detected more accurately on 3D ultrasound (*Shahina et al.*,2016).

### **Aim of the Study**

To evaluate the role of ultrasound in the assessment of pre-existing and gestational diabetes related fetal complications and its impact on obstetric management.

# Normal Ultrasound Appearance Of The Fetus

Detection of fetal anomalies requires thorough familiarity with normal fetal anatomy and sonographic landmarks. The 2<sup>nd</sup> and 3<sup>rd</sup> trimesters of pregnancy are a progressive period when the organs and organ systems formed during the 1<sup>st</sup> trimester become fully developed (*Bano et al;2016*).

#### **Fetal organ systems:**

#### **Head &Brain:**

Ultrasonographic examination of the head and brain are among the most important images that can be obtained for exclusion of a wide variety of anomalies .Examination of the fetal brain can essentially be carried out by 2 transverse planes: the transventricular and transcerebellar planes. The transventricular view can readily identify the calvaria from late first trimester until term which provides an easily means for estimation of gestational age through measurement of biparietal diameter ,(Fig 1) head circumference ,or both .This view also allows examination of the lateral ventricles which appear as complex anatomic structures that contain anechoic cerebrospinal fluid and lie deep within the cerebral

ventricles .Within the ventricular system lie the echogenic choroid plexus (Fig.2). On the other hand, the transcerebellar view(Fig .3) allows examination of the posterior fossa structures with measurement of transverse cerebellar diameter and cisterna magna (*Kalish et al*; 2004).

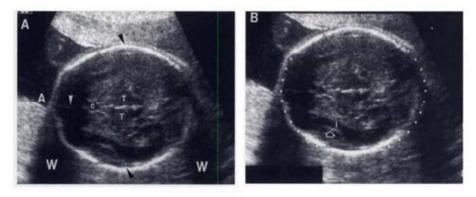



Fig (1):Biparietal diameter and head circumference A: Axial image showing the thalami(T) and cavum septum pellucidum (c)B: Head circumference measurement. (Quoted from Kalish et al ;2004)

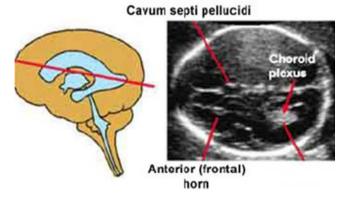



Fig (2):Transventricular view of the fetal brain

(Quoted from Kalish et al; 2004)