INTERACTION BETWEEN MILK PROTEINS AND SOME OF PHENOLIC COMPOUNDS

TAMER MOHAMMED ALI EL-MESSERY

B.Sc. Agric. Sc. (Dairy Science), Kafr El Sheikh University, 2002M. Sc. Agric. Sc. (Dairy science), Cairo University, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Dairy Science & Technology)

Department of Food Science
Faculty of Agriculture
Ain Shams University

Approval Sheet

INTERACTION BETWEEN MILK PROTEINS AND SOME OF PHENOLIC COMPOUNDS

By

TAMER MOHAMMED ALI EL-MESSERY

B.Sc. Agric. Sc. (Dairy Science), Kafr El Sheikh University, 2002M. Sc. Agric. Sc. (Dairy science), Cairo University, 2010

This thesis for Ph. D. degree has been approved by:

Date of Examination: 24 / 2 / 2014

of
Ain
Ain
Post

INTERACTION BETWEEN MILK PROTEINS AND SOME OF PHENOLIC COMPOUNDS

TAMER MOHAMMED ALI EL-MESSERY

B.Sc. Agric. Sc. (Dairy Science), Kafr El Sheikh University, 2002M. Sc. Agric. Sc. (Dairy science), Cairo University, 2010

Under the supervision of:

Dr. ALI ABDELAZIZ ALI

Prof. of Dairy Science and Technology and vice president for post graduate studies and Research, Ain Shams University (Principal Supervisor).

Dr. ZAKARIA MOHAMED REZK HASSAN

Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. HALA MOHAMED FAKHER El-DIN

Researcher Prof. Emeritus of Dairy Science, Department of Dairy Science, National Research Center.

Acknowledgement

Firstly of prayerful thanks to Allah who gives me every thing I have.

The author would like to express his deepest thanks and gratitude to **Prof. Ali Abd-Elaziz Ali,** Professor of dairy science and technology and vice president for post graduate studies Ain Shams University for his courageous supervision, discussion and correcting the manuscript, valuable guidance and complete co-operation.

Many thanks and gratitude is also extended to **Prof. Zakaria Mohamed Rezk Hassan,** Professor of dairy science and technology,
Faculty of Agriculture, Ain Shams University, for his encouragement,
suggestion the problem, discussion and correcting the manuscript,
continuous valuable suggesting and guidance in preparing this study.

I am grateful to **Prof. Hala Mohamed Faker El-Din**, Professor of dairy science, Department of dairy science, National Research Centre for supervising the whole work, providing facilities, valuable suggestion, moral support, encouragement and plentiful advice. I would have never finished this work without her help.

I am greatly indebted to **Prof. Nayrah Shaker Mehanna**, Professor of dairy science, Department of dairy science, National Research Centre, for her moral support and guidance through revision of the manuscript and her effort provided to achive this work.

I am greatly indebted to **Prof. Ryszard Amarowicz**, Professor and head of department of chemical and physical properties of food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn; Poland, for his providing experience, chemicals, equipments, the lab to do work and his cooperation throughout this work.

My deep thanks to **Dr. Wael S.I. Abou-Elmagd** Associate Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for his true efforts throughout the

laboratory work, plentiful advice and endless efforts provided for me to complete this work.

I would like to express my very special thanks for who supported me all my life and still giving without limits for my mother and my father.

All thanks to my parents, my wife, my daughter (Alaa) and my sons (Abd El-Rahman and Mohamed) for encouragement and sincere devotion all the time.

ABSTRACT

Tamer Mohammed Ali El-Messey: Interaction between Milk Proteins and Some of Phenolic Compounds. Unpublished Ph.D. Thesis, Department of Food Sciences, Faculty of Agriculture, Ain Shams University, 2014.

Interaction between milk proteins (casein and/or whey protein isolate) and some of standards phenolic compounds (Rosmarinic acid, Chlorogenic acid, Quercetin, Vanillin, Gallic acid, Caffeic acid and Catechin). determined using Sephadex G-25 were chromatography. Fractions corresponding to protein, protein-phenolic complexes and fractions corresponding to the free phenolics were collected, and their phenolic content was determined by Folin-Ciocalteu reagent. The strongest milk protein-binding affinity was noticed with caffiec acid, whereas chlorogenic acid and vanillin were less interacts with milk proteins. Interaction in the wide range of pH was determined by precipitating potential assay. The optimum pH for the highest interaction was at 3 for rosmarinic acid, quercetin, gallic acid, caffeic acid and catechin, while it was at 5 for chlorogenic acid and vanillin and the lowest interaction for all phenolic compounds was at pH 7.

The interaction between tannin fractions isolated from walnuts (*Juglans regia*), green tea and lentil (*lens culinaris* L.) and acid casein was determined using fluorescence quenching method and tannic acid standard. The interaction between casein and tannic acid had the most extensive fluorescence quenching and followed by walnut > green tea > lentil for plant tannins. Interaction in wide range of pH was determined by precipitating potential assay. The optimum pH for the highest interaction between casein and tannins was at pH 5, while it was at pH 6 for interaction between WPI and tannins

Interaction between tannin fractions from plant source and milk protein fractions [β -casein, κ -casein, β -lactoglobulin (β -Lg) and α -lactoalbumin (α -La)] were determined by high-performance liquid chromatography (HPLC) method with a photo-diode array UV detector.

Photodiode Array Detectors in UV-VIS Spectroscopy: Part

Theoretical aspects of photodiode array detection are presented in this month's INSTRUMENTATION. In next month's issue, the second article in this two-part series will cover photodiode array detection in spectroelectrochemistry, high-performance liquid chromatography, stopped-flow kinetics, and other analytical chemistry applications.

The properties of UV and visible light and the responses of many compounds to these wavelengths have long been considered a useful tool both in identification and in quantitative analysis of compounds. Molecular absorption UV-visible (UV-VIS) spectrophotometry requires detectors with high-UV to near-IR (NIR) response, large dynamic range, linear response, low noise, and temporal as well as thermal stability.

The photodiode array used as a UV-VIS spectrophotometric detector meets these requirements with the added advantage over classical systems of acquiring the entire UV-VIS spectrum simultaneously. Because spectral acquisition is a parallel process, many of the concerns of UV-VIS spectrophotometer users, such as sample photodegradation, scanning nonlinearities, and difficulties in observing transient phenomena, have been minimized if not eliminated.

0003-2700/85/A357-1057\$01.50/0 © 1985 American Chemical Society

Conventional UV-VIS spectrometers

Complete UV-VIS spectrophotometric information can be obtained either by scanning across the spectral region of interest or by simultaneously monitoring this region in its entirety. Conventional scanning monochromator systems use a continuous source (deuterium or tungsten lamp) and a dispersive element (a grating or a prism). This dispersive element is mechanically rotated to vary the wavelength of

light passed the The resulting passes through detected by a Because samp narrow waveleare acquired a optical information of the ciently and so (Figure 1).

Attempts to tiplier tubes a been accompli

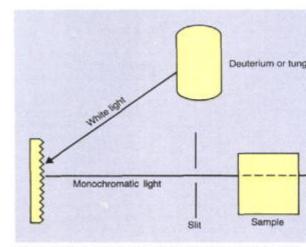


Figure 1. Conventional spectrometer optical configuration

ANALYTICAL CHEMISTRY, VOL. 57, NO. 9

CONTENTS

Contents	Pages
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATION	X
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	5
2.1. Milk proteins	5
2.2. Phenolic compounds	8
2.3. Classification and occurrence of dietary Phenolic compounds	11
2.3.1. Mono- Phenolic compounds	11
2.3.1.1. Caffeic acid	11
2.3.1.2. Gallic acid	11
2.3.1.3. Vanillin	12
2.3.1.4. Chlorogenic acid	12
2.3.2. Di- Phenol compounds	13
2.3.2.1. Rosmarinic acid	13
2.3.2.2. (+)-Catechin	13
2.3.2.3. Quercetin	14
2.3.3. Polyphenolic (Tannins)	15
2.4. Polyphenol protein interactions	20
2.4.1. Non-covalent interaction between protein and phenolic compounds	21
2.4.1.1. Hydrogen bonding	22
2.4.1.2. Hydrophobic interaction	23
2.4.2. Covalent interaction between proteins and phenolic compounds	24
2.5. Effect of polyphenols on proteins	25
2.5.1. Health benefit impact	25
2.5.2. Adverse impact on human health	25
2.6. Effect of proteins on polyphenols bioactivity	27
2.6.1. Effect of antioxidant activity of phenolic compound	27
2.6.2. Effect of milk protein on polyphenol antioxidant activities	27

2.7Phytochemicals added to dairy	30
III. MATERIALS AND METHODS	33
3.1. Materials	33
3.2. Methods	33
3.2.1. Preparation of casein	33
3.2.2. Determination of the interaction between milk proteins and low	
molecular weight phenolic compounds	34
3.2.2.1. Preparation of phenolic compounds solutions	34
3.2.2.2. Preparation of milk proteins solutions	34
3.2.2.3. Separation of milk proteins and phenolics by Sephadex G25	34
3.2.3. Precipitating potential assay	35
3.2.4. Determination of total phenolic compounds	36
3.2.5. Extraction and fractionation	36
3.2.6. Condensed tannins content	37
3.2.7. Fluorescence quenching method	37
3.2.8. Determination of the interaction between β -casein or κ -casein and	
tannins by HPLC	38
3.2.8.1. Sample preparation.	38
3.2.8.2. HPLC analysis.	38
3.2.9. Determination of the interaction between whey protein isolate and	
tannins by HPLC	38
3.2.9.1. Sample preparation	38
3.2.9.1. HPLC analysis	39
3.2.10. Cell line	39
3.2.11. Fourier Transform Infrared Spectroscopy (FTIR)	40
3.2.12. Statistical analysis	41
IV. RESULTS AND DISCUSSIAN	42
	74
Part I: Interactions between milk proteins and low molecular weight	42
phenolic compounds	42

4.1. Interactions between milk proteins and mono-phenolic compounds by	y
column chromatography	
4.1.1. Caffeic acid	••
4.1.2. Gallic acid	
4.1.3. Chlorogenic acid	
4.1.4. Vanillin	
4.2. Interactions between milk proteins and di-phenolic compounds between	y
column chromatography	
4.2.1. Catechin	
4.2.2. Qurecetin	
4.2.3. Rosmarinic acid	
4.3. Effect of pH values on interaction between milk proteins and lo molecular weight phenolic compounds	
Part II: Interactions between milk proteins and polyphenolic compound	ls
(tannins)	
4.4. Interactions between casein and tannins using fluorescence quenching.	
4.5. Interactions between milk proteins (β-casein and κ-casein) and tannin using HPLC	18
4.6. Interactions whey protein isolate with tannins by HPLC4.7. Effect of pH value on interactions milk proteins and poly-phenol	io
compounds	IC
4.7.1. Tannins-casein interactions.	
4.7.2. Tannins-WPI interactions	
Part III: Cytotoxic activity test of phenolic compounds against the huma	
tumor cell line and Fourier Transform Infrared Spectroscopy (FTIR)	
4.8. Cell line test	
4.8.1. Complex milk proteins and mono-phenolic compounds	
4.8.2. Complex milk proteins and di-phenolic compound	•
4.8.3. Complex milk proteins and poly-phenolic compound	. .
4.9. Fourier Transform Infrared Spectroscopy (FTIR)	
4.9.1. Interactions milk proteins with mono-phenolic compounds	

4.9.2. Interactions milk proteins di-phenolic compound	98
4.9.3. Interactions milk proteins polyphenolic compound	100
V. Summary and conclusion	
VI. References	111
Arabic summary	

LIST OF TABLES

No.	Title	Pages
1	Characteristics of the principal proteins in cow's milk	6
2	Classification and sources of dietary	17
3	Interactions evaluation between phenolic compound and milk protein	51
4	Total phenolic and condensed tannin content of tannin fractions from plants	60
5	Interaction (%) of β -casein and κ -casein with tannins	67
6	Percentage of WPI in the sample after interaction with tannins	72
7	Percentage of milk proteins interaction with tannins	73
8	Cytotoxic activity of phenolic compounds against the human tumor cell line	91

LIST OF FIGURES

No.	Title	Pages
1	Model for protein-polyphenol interaction	21
2	Sephadex G-25 elution profiles for the mixture of caffeic acid and casein or WPI	43
3	Sephadex G-25 elution profiles for the mixture of gallic acid and casein or WPI.	44
4	Sephadex G-25 elution profiles for the mixture of chloroginic acid and casein or WPI	45
5	Sephadex G-25 elution profiles for the mixture of vanillin and casein or WPI	46
6	Sephadex G-25 elution profiles for the mixture of catechin and casein or WPI	47
7	Sephadex G-25 elution profiles for the mixture of qurcetin and casein or WPI	48
8	Sephadex G-25 elution profiles for the mixture of rosmarinic acid and casein or WPI	49
9	Interaction evaluation of casein and WPI-bound phenolics	50
10	Effect of pH values on formation of insoluble complexes between casein and low molecular weight phenolic compounds	53
11	Effect of pH values on formation of insoluble complexes between WPI and low molecular weight phenolic compounds	53

12	Effect of pH values on formation of insoluble complexes between casein and vanillin – chlorogenic acid	54
13	Effect of pH values on formation of insoluble complexes between WPI and vanillin – chlorogenic acid	54
14	Relationship between the amounts of precipitating protein–phenolic compounds complex formed and the concentration of chloroginic acid add for casein and WPI.	55
15	Relationship between the amounts of precipitating protein–phenolic compounds complex formed and the concentration of vanillin add for casein and WPI.	55
16	Relationship between the amounts of precipitating protein–phenolic compounds complex formed and the concentration of caffeic acid add for casein and WPI	56
17	Relationship between the amounts of precipitating protein–phenolic compounds complex formed and the concentration of qurecetin add for casein and WPI	56
18	Relationship between the amounts of precipitating protein–phenolic compounds complex formed and the concentration of gallic acid add for casein and WPI	57
19	Relationship between the amounts of precipitating protein-phenolic compounds complex formed and the concentration of catechin add for casein and WPI	57
20	Relationship between the amounts of precipitating protein–phenolic compounds complex formed and the concentrations of rosmarinic acid add for casein and WPI	58

21	Fluorescence emission spectra (at λ ex = 282 nm) of casein and tannic acid	62
22	Tryptophan fluorescence quenching of tannin fraction with casein as relative fluorescence intensity	63
23	HPLC chromatogram of β -casein standard and after interaction with tannins.	66
24	HPLC chromatogram of κ -casein standard and after interaction with tannins.	69
25	UV spectra of complex between β -casein and tannins using HPLC method.	71
26	UV spectra of complex between κ-casein and tannins using HPLC method	71
27	HPLC chromatogram of α -lactalbumin and β -lactoglobulin standard and after interaction with tannins	75
28	Effect of pH values on formation of insoluble complexes between tannin fractions and casein	76
29	Relationship between the amounts of casein-tannins complexes precipitated.	77
30	Correlation coefficients for complexes formed and the amount of tannin fraction added for casein	78
31	Effect of pH values on formation of insoluble complexes between tannin fractions and casein	79
32	Correlation coefficients for complexes formed and the amount of tannin fraction added for WPI	80