Surrogate Markers of Vitamin D Deficiency Diagnosis

Thesis
Submitted for Partial Fulfillment of Master
Degree in Internal Medicine

By

Dina Ahmed Marawan

M.B, B.CH

Supervised by

Prof Dr. /Raef Malak Boutros

Professor of Internal Medicine, Diabetes and Endocrinology Faculty of Medicine – Ain Shams University

Ass.Dr. /Rania Sayed Abd EL-Baky

Assistant Professor of Internal Medicine, Diabetes and Endocrinology Faculty of Medicine – Ain Shams University

Dr. /Laila Mahmoud Ali Hindawy

Lecturer of Internal Medicine, Diabetes and Endocrinology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

First of all, I would like to express my deep gratitude to ALLAH for his care and generosity throughout my life.

I wish to express my deepest thanks and respect for **Prof**. **Dr. Raef Malak Boutros** Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for his valuable supervision, guidance and kind advice throughout this work.

Also I wish to express my deep gratitude to Asses. Prof. Dr. Rania Sayed Abd EL-Baky, Asses. Prof of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University for her good support, continuous supervision and unlimited help during this work.

I also like to express my deepest gratitude to Asses. Prof. Dr. Laila Mahmoud Ali Hindawy, Asses. Prof of Internal Medicine and Endocrinology, Faculty of Medicine, AinShams University for her continuous supervision, guidance, support and encouragement.

And Dr. Magdy Abbas Abd El-Aziz, consultant of Biochemistry, Faculty of Medicine, AinShams University Hospital

Lastly, I shall never forget to thank my mother and my father for their great support not only through this work but also through my whole life and to thank my colleagues for their support.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	4
Review of Literature	
Vitamin D Physiology and Structure	5
Vitamin D Deficiency Diseases	24
Global Burden of Hypovitaminosis D	48
Diagnosis and Treatment of Vitamin D Deficiency	y59
Subjects and Methods	68
Results	76
Discussion	90
Summary and Conclusion	103
Recommendations	107
References	108
Arabic summary	

List of Tables

Table No.	Title Po	Page No.		
Table (1):	Forms of Vitamin D	6		
Table (2):	Recommended Dietary Allowance (RDA Vitamin D			
Table (3):	Clinical risk factors for Vitamin deficiency			
Table (4):	Laboratory and radiographic findings that suggest possible Vitamin D deficiency			
Table (5):	Reference values of Vitamin D levels	71		
Table (6):	Reference values of PTH levels			
Table (7):	Descriptive statistics of study groups I II and III (n=90).			
Table (8):	Descriptive statistics of study groups and F (n=90).			
Table (9):	Descriptive statistics of study groups N O (no=90)			
Table (10):	Comparison between GroupI and Group	II 83		
Table (11):	Comparison between Group M and Grou	up F 84		
Table (12):	Comparison between Group N and Grou	ір О 85		
Table (13):	Correlation study between different parameters			
Table (14):	The predictive accuracy of PTH a marker for Vitamin D status			
Table (15):	The predictive accuracy of Total Ionized Ca, PO4 and CaxPO4 Produc markers for Vitamin D status	t as		

List of Figures

Fig. No.	Title	Page 1	Vo.
Figure (1):	Steps of Vitamin D bioactivation		8
Figure (2):	Possible effects of Vitamin D deficiency	7	28
Figure (3):	Hypothesis: Reduced sun exposure ove past 40 years has resulted in diseases.	more	49
Figure (4):	Percentage of Vitamin D deficiency and sufficiency are participants	ency, mong	
Figure (5):	Percentage of males and fe participants		81
Figure (6):	Percentage of obese to non oparticipants according to BMI		82
Figure (7):	It shows that a negative signif correlation between Vit.D and PTH		87
Figure (8):	ROC curve showing the predictive accurate of PTH as a surrogate marker for Vita D	amin	88
Figure (9):	ROC curve showing the predictive accurate of Total Ca, Ionized Ca, PO4 and Cas Product as a surrogate marker for Vita D	xPO4 amin	89

List of Abbreviations

Abb.	Full term
1, $25(OH)_2 D \dots$:	1,25-dihydroxyvitamin D
25 OHD:	25 hydroxy vitamin D
ALP :	Alkaline phosphatase
ALS :	Amyotrophic lateral sclerosis
BMI :	Body mass index
Ca BP :	Calcium binding protein
COPD :	Chronic obstructive pulmonary disease
CVD :	Cardiovascular disease
DBP :	Vitamin D Binding Protein
ESRD :	End Stage Renal Disease
FAS :	Fatty acid synthase
FFA :	Free Fatty Acids
FGF :	Fibroblast growth factors
GFR :	Glomerular Filtration Rate
HDL:	High Density Lipoprotein
HPT :	Hyperparathyroidism
IBD :	Inflammatory bowel disease
IU :	International Unit
MRSA :	Methicillin-resistant Staphylococcus aureus
MS :	Multiple Sclerosis
NHANES :	National Health and Nutrition
	Examination Survey
NIDDM :	Non Insulin dependant diabetes mellitus
OPG :	Osteoprotegerin
PMCA1 :	Plasma membrane calcium ATPase
PTH :	Parathyroid hormone
RA :	Rheumatoid Arthritis
RANKL: :	Receptor activator of NF-KB Ligand
RDA :	Recommended Dietary Allowance
ROC curve:	Receiver Operating Characteristic curve

List of Abbreviations

Full term Abb. Retinoic acid X receptor **RXR....**: Seasonal affective disorder **SAD**: Survey in Europe on Nutrition and the SENECA: Elderly; a Concerted Action **SPF**: Sun Protection Factor **T1DM**: Type 1 Diabetes Mellitus **TB**....:: **Tuberculosis** Th1,2....: T helper 1,2 ultraviolet B (shortwave) rays **UVB....**: Vitamin D Binding Protein **VDBP....**: **VDDR....**: Vitamin D deficiency rickets Vitamin D intoxication **VDI**: Vitamin D Receptor **VDR....**: **VDREs**: Vitamin D response elements

INTRODUCTION

Vitamin D deficiency is becoming endemic in many parts of the world for different reasons; in northern countries above latitude 40°, there is insufficient UVB exposure year round, in southern and sunny countries, urbanization and traditional clothing prevents UVB reaching skin surface. As a result, wide prevalence of Vitamin D deficiency is observed world wide.

Hypovitaminosis - D is very common in Middle East & Africa and does not spare the pediatric age (*Fuleihan*, 2009). A large proportion of adolescent girls, up to 70% in Iran (*Moussavi et al.*, 2005), 80% in Saudi Arabia (*Siddiqui*, *Kamfar*, 2007) & 32% in Lebanese girls and between 9% and 12% in Lebanese adolescent boys (*Fuleihan et al.*, 2006). It was 35% for a Vitamin D level below 25 nmol/L in a study of elderly subjects from a geriatric hospital in Israel and between 60% and 65% in Lebanon, Jordan, and Iran (*Hashemipour et al.*, 2006) and was 48% from Tunisia (*Meddeb et al.*, 2005). Studies from Saudi Arabia, Kuwait, United Arab Emirates, and Iran reveal that 10–60% of mothers and 40–80% of their neonates had undetectable low Vitamin D levels (0–25 nmol/L) at delivery (*Ainy et al.*, 2006).

Pilot Studies about the prevalence of Vitamin D in Egypt reveal that; in fertile females between (20-50)ys the rate is 80% in Cairo (*Matar*, 2011) and 70% in port-Fouad (*El- Dawoody*, 2011), in old age between (60-70)ys the rate is more than 50%

1

(Selim, 2011) and 90% in those over 75ys (Salem, 2011) and in females receiving Vitamin D pregnant and calcium supplementation the rate is 50 % (Nady, 2011).

Vitamin D deficiency and insufficiency are becoming more common in developed countries; in the UK, the prevalence of Vitamin D deficiency in all adults is around 14.5%, and may be more than 30% in those over 65 years old, and as high as 94% in otherwise healthy south Asian adults (Cheetham et al., 2010).

In U.S population the prevalence is 40%; 32% of doctors and medical school students, 42% of African American women of childbearing age. Up to 80% of nursing home patients are vitamin-D deficient, Up to 60% of all hospital patients \$\&76\% of pregnant mothers are severely vitamin-D deficient causing widespread vitamin-D deficiencies in their unborn children (Michael Holick, 2011).

Hypovitaminosis- D is typically diagnosed by measuring the concentration of 25-hydroxyvitamin D (calcidiol) in blood, which is a precursor to the active form 1,25-dihydroxyvitamin D (calcitriol). The following are four categories for Hypovitaminosis D:

- Insufficient 50–75 nmol/L (20–30 ng/mL)
- Mild deficiency 25–50 nmol/L (10–20 ng/mL)
- Moderate deficiency 12.5–25.0 nmol/L (5–10 ng/mL)

- Severe deficiency < 12.5 nmol/L (< 5 ng/mL) (Australian Family Physician, 2008).

A discrepancy exists between the cost of diagnosis of vit.D deficiency and the cost of treatment. For example; measurement of 25(OH) vit D costs about 600 EGP (100Dollars), on the other hand the cost of 1 injection of 200, 000IU of vit D is 5EGP (10 cents). Because of the high prevalence of Vitamin D deficiency according to pilot Egyptian study and because of the high cost of diagnosis, surrogate markers are needed to identify the individuals who need Vitamin D supplements.

AIM OF THE WORK

Wapplicable in large sectors of society at low cost to diagnose such a widely prevalent condition with reasonable cost benefit ratio.

VITAMIN D PHYSIOLOGY AND **STRUCTURE**

itamin D is a fat-soluble vitamin that is naturally present in very few foods and available as a dietary supplement. It is also produced endogenously when ultraviolet rays from sunlight strike the skin and trigger Vitamin D synthesis (Institute of Medicine, 2010).

Vitamin D promotes calcium absorption in the gut and maintains adequate serum calcium and phosphate concentrations to enable normal mineralization of bone and to prevent hypocalcemic tetany. It is also needed for bone growth and bone remodeling by osteoblasts and osteoclasts (Cranney et al., 2007).

Vitamin D has other roles in the body, including modulation of cell growth, neuromuscular and immune function, and reduction of inflammation (Holick, 2006). Many genes encoding proteins that regulate cell proliferation, differentiation, and apoptosis are modulated in part by Vitamin D (Institute of Medicine, 2010).

Several forms (vitamers) of Vitamin D exist (see table). The two major forms are Vitamin D₂ or ergocalciferol, and Vitamin D₃ or cholecalciferol, Vitamin D without a subscript refers to either D₂ or D₃ or both. These are known collectively as calciferol (Dorland's Illustrated Medical Dictionary, 2013).

Table (1): Forms of Vitamin D (*Dorland's Illustrated Medical Dictionary*, 2013):

Name	Chemical composition	
Vitamin D ₁	Molecular compound of ergocalciferol with lumisterol	
Vitamin D ₂	Ergocalciferol (made from ergosterol)	
Vitamin D ₃	Cholecalciferol (made from 7-Dehydrocholesterol in the skin).	
Vitamin D ₄	22-dihydroergocalciferol	
Vitamin D ₅	Sitocalciferol (made from 7-dehydrositosterol)	

Sources of Vitamin D

The main sources of Vitamin D are sunlight, supplements and diet (Holick, 2007). Exposure of human skin to solar UVB radiation (wavelengths: 290–315 nm) leads to the conversion of 7-dehydrocholesterol to preVitamin D₃ in the skin. PreVitamin D₃ is then rapidly converted to Vitamin D₃ (cholecalciferol) by temperature- and membrane-dependent processes ($Holick\ et\ al.$, 1995).

The number of foods naturally containing Vitamin D in significant amounts is very limited. Among these are oily fish such as salmon, sardines and tuna, and oils of the liver of some fish such as cod as well as sun-exposed mushrooms (*Holick*, 2007).

The Recommended Dietary Allowance (RDA)

The RDA for Vitamin D is listed in the table below by life stage and gender (Holick et al., 2011).

Recommended Dietary Allowance (RDA) for **Table (2):** Vitamin D (Holick et al., 2011).

Life Stage	Age	Males mcg/day (IU/day)	Females mcg/day (IU/day)
Infants	0-12 months	400 IU	400 IU
Children and Adolescents	1-18 years	600 IU	600 IU
Adults	19-50 years	600 IU	600 IU
Adults	51-70 years	600 IU	600 IU
Adults	71 years and older	800 IU	800 IU
Pregnancy And lactation	all ages	-	1500-2000 IU

Vitamin D metabolism

Vitamin D Bioactivation

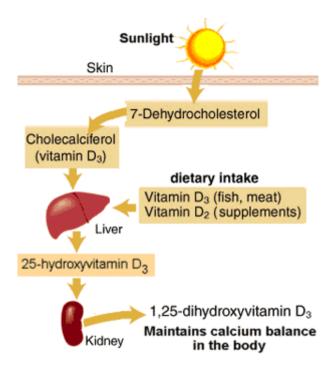


Figure (1): Steps of Vitamin D bioactivation (Dusso et al., 2005).

Vitamin D_2 (ergocalciferol) is obtained from certain food and, principally, from vitamin supplements. Vitamin D_3 (VD₃, cholecalciferol) is present in food and vitamin supplements, but is mainly generated by skin exposed to ultraviolet B radiation: 7- and 8-dehydrocholesterol are converted by photolysis to pre-VD₃ and then by thermal isomerization, to VD₃ (*Dusso et al.*, *2005*).