

Synthesis and chemical reactivity of some pyranoquinolinone derivatives

A Thesis Submitted
By

Youssef Abdul-Salam Saeed Nasser Alnamer
B.Sc., Ed. 1993, M.Sc. 2011

In Partial Fulfillment for Requirements of Doctor of Philosophy Degree For Teacher's Preparation in Science (Organic Chemistry)

Supervisors

Prof. Dr. Yassin Abdallah Gabr Prof. Ass. Magdy Ahmed Mohamed Prof. Ass. Hany Mohamed Hassanin

> Department of Chemistry Faculty of Education Ain Shams University

> > Cairo 2015

Approval Sheet

Synthesis and chemical reactivity of some pyranoquinolinone derivatives

Supervisors	Signature
Prof. Dr. Yassin Abdallah (Gabr
Prof. of Organic Chemistry, Faculty	of Education, Ain Shams University.
Prof. Ass. Magdy Ahmed A	Nohamed
Prof. Ass. of Organic Chemistry, Fa	culty of Education, Ain Shams University
Prof. Ass. Hany Mohamed	Hassanin
Prof. Ass. of Organic Chemistry, Facu	alty of Education, Ain Shams University.
Head of Chen	nistry Department
Prof. Dr.	Ali M. Taha
Higher studies:	
The thesis was approved	Approval date / / 2015
Approved by Council of Faculty	11 ,
Date / / 2015	Date / / 2015

قُلْ إِنَّ حَلَّتِي وَنُسُكِي وَمَدْيَايَ وَمَمَاتِي لِلَّهِ رَبِّ الْعَالَمِينَ لاَ شَرِيكَ لَهُ وَبِذَلِكَ أُمِرْتُ وَأَذَا أَوَّلُ الْمُسْلِمِينَ

حدق الله العظيم

سورة الانعام (الاية 162-163)

Dedication

To
my mother,
my father,
my wife,
and my children

Acknowledgement

First and foremost, praise and thanks be to Allah for enabling me to complete this research.

I am deeply grateful to my thesis supervisors; Prof. Dr. Yassin Abdallah Gabr, Prof. of Organic Chemistry Faculty of Education, Ain Shams University to whom I am greatly indebted for his support, encouragement, constructive comment, useful feedback and wisdom.

I would like to express my sincere thanks and appreciation to Dr. Magdy Ahmed Mohamed, Prof. Ass. of Organic Chemistry, Faculty of Education, Ain Shams University; for all things, for his continuous and valuable discussions during supervision, for his suggestions, valuable helping in interpretation of the results and lay out of this thesis. I would like to express my thanks to him for his efforts in this thesis

I am very grateful to Dr. **Hany Mohamed Hassanin**, Prof. Ass. of Organic Chemistry, Faculty of Education, Ain Shams University; for his help, useful advice, and enthusiastic support, and to follow the progress of the work with keen interest and guidance.

Thanks to Prof. Dr **Ai Mahmoud Taha** the present Head of the Department of Chemistry and Prof. Dr. **Mostafa Mohamed Ismail** the previous head of the Department of Chemistry, who introduced great kind facilities and encouragements.

Words cannot express my love and respect to my father/ mother's soul, God rest her soul, beloved wife, my children Afnan, Elyas, Abrar, Athkar and everybody in my larger family whose encouragement and prayers enlightened my way. Thanks are devoted to them for believing in me and for providing me with familial love and support that enabled me to accomplish this study.

Youssef Abdel-Salam Saeed Nasser Alnamer

Contents

Aim of the work

Abstract

Summary	
Literature Survey	
1. Introduction	1
2. Synthesis of pyrano[3,2-c]quinolinones	2
2.1. From substituted anilines	2
2.2. From 4-hydroxyquinolin-2(1 <i>H</i>)-one derivatives	5
2.3. From 3-acyl-4-hydroxyquinolin-2(1 <i>H</i>)-ones	14
3. Chemical reactivity of pyrano[3,2-c]quinolinones	26
3.1. Hydrolysis	26
3.1.1. Alkaline hydrolysis	26
3.1.2. Acid hydrolysis	30
3.2. Hydrazinolysis	31
3.3. Electrophilic substitution reactions	33
3.3.1. Nitration	33
3.3.2. Acetylation	34
3.3.3. Halogenation	35
3.3.3.1. Bromination	35
3.3.3.2. Chlorination	36
3.3.4. Nitrosation	38
3.3.5. Coupling with diazonium salts	38
3.4. Nucleophilic substitution reactions	39
3.5. Nucleophilic Amiatation (lactamization)	43
3.6. Reactions with aldehydes, ketone, and ylidines	43
3.7. Reactions with 1,3-binucleophiles	46
3.8. Reactions with 1,4-binucleophiles	47

3.9. Reactions with active methylene compounds.......48

Origina	ıl works	50
Part 1		
	Graphical abstract	52
	Results and discussion	53
	Antimicrobial evaluation	75
	Experimental	78
Part 2		
	Graphical abstract	94
	Results and discussion	95
	Antimicrobial evaluation	117
	Experimental	120
Conclu	sions	139
Referen	nces	140
Supple	mentary Spectral Data	159
Publish	ned work	
Arabic	Summary	j
Arabic	abstract	

Aim of the work

The present work aims to:

- 1. Synthesize the novel 6-methyl-4,5-dioxo-5,6-dihydro-4*H*-pyrano[3,2-*c*]quinoline-3-carboxaldehyde (4).
- 2. Synthesize the novel 4-hydroxy-6-methyl-2,5-dioxo-5,6-dihydro-2*H*-pyrano[3,2-*c*]quinoline-3-carboxaldehyde (**5**).
- 3. Utilize the two novel aldehydes as starting materials to prepare a variety of novel 4-hydroxyquinolin-2(1H)-ones and pyrano[3,2-c] quinoline-2,5(6H)-diones.
- Investigate the chemical reactivity of aldehydes 4 and 5 towards different nucleophilic reagents.
- 5. Synthesize new heterocyclic compounds, containing both quinolinone and pyrano[3,2-c]quinolinone and other heterocycles in one molecular frame, of expected biological activity.
- 6. Study of spectral properties of different newly prepared quinolinones and pyrano[3,2-c]quinolinone products.
- 7. Evaluate the antimicrobial activity of the newly synthesized compounds.

Synthesis and chemical reactivity of some pyranoquinolinone derivatives.

Youssef Abdul-Salam Said Nasser Al-Namer

Department of Chemistry, Faculty of Education, Ain Shams University

Vilsmeier-Haack formylation of 3-acetyl-4-hydroxy-1-methylquinolin-2(1*H*)-one **(2)** 3-(4-hydroxy-1-methy1-2-oxo-(1H)-quinolin-3-yl)-3oxopropanoic acid (3) produced the novel 6-methyl-4,5-dioxo-5,6-dihydro-4Hpyrano[3,2-c]quinoline-3-carboxaldehyde (4) and 4-hydroxy-6-methyl-2,5-dioxo-5,6-dihydro-2*H*-pyrano[3,2-*c*]quinoline-3-carboxaldehyde (5). Reactions of carboxaldehyde 4 with a diversity of nucleophilic reagents were studied and a variety of products were obtained *via* ring-opening ring-closure (RORC) sequence. The Chemical reactivity of carboxaldehyde 5 with a diversity of nitrogen nucleophilic reagents were studied and a variety of products were obtained. Some 1,3,4-oxadiazolyl/1,3,4-thiadiazolyl/benzothiazolyl/chromeno[2,3-b]pyridyl linked pyrano[3,2-c]quinoline-2,5(6H)-dione were efficiently synthesized. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data. The newly synthesized compounds were screened for their antimicrobial activity.

Keywords: pyrano[3,2-c]quinoline, 4-hydroxyquinolin-2(1H)-one; Vilsmeier-Haack reaction, , ring-opening/ring-closure, nucleophilic reaction, heterocyclization.

Supervisors:

Prof. Dr. Yassin Abdallah Gabr
Professor of Organic Chemistry, Faculty of Education, Ain Shams University.
Prof. Ass. Magdy Ahmed Ibrahim
Prof. Ass. of Organic Chemistry, Faculty of Education, Ain Shams University.
Prof. Ass. of Organic Chemistry, Faculty of Education, Ain Shams University.

English Summary

Summary of the original work

Synthesis and chemical reactivity of some pyranoquinolinone derivatives.

In the present thesis, applying *Vilsmeier-Haack* formylation on 3-acetyl-4-hydroxy-1-methylquinolin-2(1H)-one (2) and 3-(4-hydroxy-1-methy1-2-oxo-(1H)-quinolin-3-yl)-3-oxopropanoic acid (3) produced the novel 6-methyl-4,5-dioxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxaldehyde (4) and 4-hydroxy-6-methyl-2,5-dioxo-5,6-dihydro-2H-pyrano[3,2-c]quinoline-3-carboxaldehyde (5), respectively (Scheme i).

The present work aimed to study the chemical reactivity of the novel aldehydes $\bf 4$ and $\bf 5$ towards a diversity of nucleophilic reagents hoping to construct a novel series substituted quinolin-2(1H)-ones and substituted pyrano[3,2-c]quinoline-2,5(6H)-diones of potential biological activity.

I

Scheme i. Synthesis of the novel pyrano[3,2-c]quinoline-3-carboxaldehydes **4** and **5**.

Part I

Synthesis, characterization and antimicrobial evaluation of some novel 4-hydroxyquinolin-2(1H)-ones

Vilsmeier-Haack formylation of 3-acetyl-4-hydroxy-1-methylquinolin- 2(1H)-one (2), using dimethylformamide and phosphoryl chloride, led to the novel 6-methyl-4,5-dioxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxaldehyde (4) (Scheme 1).

Scheme 1. Synthesis of the novel pyrano[3,2-*c*]quinoline-3-carboxaldehyde **4**.

The present work aimed to study the chemical reactivity of carboxaldehyde **4** towards a variety of nitrogen and carbon nucleophiles hoping to construct some novel 4-hydroxyquinolinones bearing a diversity of heterocyclic systems of expected biological activity. Thus, treatment of carboxaldehyde **4** with hydrazine hydrate in boiling ethanol afforded 4-hydroxy-1-methyl-3-(1H-pyrazol-4-ylcarbonyl)quinolin-2(1H)-one (**6**), *via* the non isolable hydrazone intermediate **A** which underwent, *in situ*, intramolecular nucleophilic attack of N²H at C-2 position with concomitant γ -pyrone ring opening (Scheme 2).

Scheme 2. Reaction of carboxaldehyde **4** with hydrazine hydrate.

Also, condensation of carboxaldehyde **4** with phenyl hydrazine in absolute ethanol containing few drops of triethylamine (TEA) gave phenylpyrazole derivative **7**.

Similarly, condensation of carboxaldehyde **4** with 7-chloro-4-hydrazinoquinoline (**8**) and 3-hydrazino-5,6-diphenyl-1,2,4-triazine (**9**) under the same reaction conditions produced the quinolinylpyrazolylcarbonyl- quinolinone **10** and triazinylpyrazolylcarbonylquinolinone **11**, respectively (Scheme 3).

Scheme 3: Condensation of carboxaldehyde **4** with some hydrazine derivatives.

On the other hand, carboxaldehyde **4** was allowed to react with some 1,3-*N*,*N*-binucleophiles. Treatment of carboxaldehyde **4** with guanidine hydrochloride, cyanoguanidine and thiourea in ethanolic potassium hydroxide solution gave the corresponding pyrimidine derivatives **12-14**, respectively (Scheme **4**).