Recent Advances in post-operative Pediatric Pain Management

Essay

Submitted for partial fulfillment of master degree in Anesthesia

Presented by

Yasser Sayed Sobhy El-Sayed

M.B., B.Ch. Ain Shams University

Supervised by

Prof.Dr.Ahmed Abd Elaala Al-Shawarbi

Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr.Wael Ahmed Mohamed Abd Elaal

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr.Dalia Mahmoud Ahmed El Fawy

Lecturer of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University

2014

Acknowledgements

First, and foremost, my deepest gratitude and thanks should be offered to" ALLAH", the most kind and most merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof.Dr.** Ahmed Abd Elaala Al-Shawarbi, Professor of Anesthesia and Intensive Care, Faculty of Medicine – Ain Shams University, for his continuous support and guidance for me to present this work. It really has been an honor to work under his generous supervision.

I acknowledge with much gratitude to **Dr. Wael**Ahmed Mohamed Abd Elaal, Assistant Professor of
Anesthesia and Intensive Care, Faculty of Medicine – Ain
Shams University, for his great supervision and unlimited
help to provide all facilities to accomplish this work.

I acknowledge with much gratitude to **Dr. Dalia**Mahmoud Ahmed El Fawy, Lecturer of Anesthesia
and Intensive Care, Faculty of Medicine – Ain Shams
University, for her great supervision, valuable advice and
unlimited help to provide all facilities to accomplish this
work.

Last but not least, thanks to my Wife and my Parents, for helping me to finish this work.

(2) Yasser Sayed Sobhy El-Sayed

List of Contents

Subject	Page No.
ListofAbbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	3
Chapter (1): Pathophysiology of Pain	4
Chapter (2): Pediatric Pain Assessment	16
Chapter (3): Pharmacological Management of Postoperative Pain in Pediatric	es24
Chapter (4): Recent Advances in Pediatric Postoperative Pain Management	57
Summary	114
References	116
Arabic Summary	

List of Abbreviations

CEA : Continuous epidural anesthesia
CGRP : Calcitonin gene-related peptide

CI : Cognitively impaired

CPR : Cardiopulmonary resuscitation

D10W : Dextrose 10 % in water

DRG : Dorsal root ganglion

EO : External oblique

FA : Femoral artery

FDA : Food and Drug Administration

FN : Femoral nerve FV : Femoral vein

GABA : Gamma-aminobutyric acid

GSH : Glutathione

HSP : Hockey Stick Probe

MCN : Musculocutaneous nerve NCA : Nurse controlled analgesia

NMDA : N-methyl-D-aspartate

NSAIDs : Non-steroidal anti-inflammatory drugs

PCA : Patient controlled analgesia

PCEA : Patient controlled epidural anesthesia
pKa : Negative base-10 logarithm of the acid

dissociation constant of a solution

PNB : Peripheral nerve block

PONV : Postoperative nausea and vomiting

RS : Rectus sheath

TAP : Transversus abdominis plane

US : Ultrasound

USG : Ultrasound guidance

5-HT3 : Serotonin

List of Tables

Cable V	lo. Eitle	Page No.
Table (1):	Distribution of different behaviour used in neonates, infants and childr to age groups	en, according
Table (2):	I.V. acetaminophen (PerfalganTM as slow i.v. infusion over 15 min	, , ,
Table (3):	Equianalgesic ratios, single dosing infusion of opioids	

List of Figures

Figure No.	Eitle	Page No.
Figure (1):	Spinal and Supraspinal pathways of	pain7
Figure (2):	Peripheral inflammatory mediators.	8
Figure (3):	Antidromic stimulation of noc primary afferents results in the re neuropeptides from primary peripheral terminals	lease of afferent
Figure (4):	Possible spinal responses to penerve injury	-
Figure (5):	Ascending nociceptive pathways	12
Figure (6):	Three scales for assessing children word descriptor scale, facial affecti and colored analog scale	ve scale
Figure (7):	Threading a caudal catheter	70
Figure (8):	Spinal block	76
Figure (9):	Spinal block in infant	77
Figure (10):	Sonoanatomy of the caudal epidurat the level of the sacral hiatus	
Figure (11):	Sonoanatomy of the spinal column canal in transverse view at the L3/ L	
Figure (12):	Sonoanatomy of the spinal column canal in a paramedian longitudinal the midthoracic level	view at
Figure (13):	TAP block in paediatrics	83
Figure (14):	Sonoanatomy at the transversus ab plane (TAP)	

List of Figures (Cont...)

Figure No.	Citle	Page No.
Figure (15):	Sonoanatomy for the rectus sheat Note:The rectus abdominis muscle between the anterior and posterior the rectus sheath	e is seen walls of
Figure (16):	Ilioinguinal/Iliohypogastric nerve b	lock)86
Figure (17):	Sonoantomy for ilioinguinal/iliohypogastric nerve bl	the lock87
Figure (18):	Sonoantomy of the interscalene Note that the roots appear to be s top of each other in a "s appearance."	itting on nowman
Figure (19):	Snographic appearance of the interpretation brachial plexus.	
Figure (20):	Sonoanatomy for the supraclavicular Note the subclavian artery (SA) and surrounding hyperechoic plexus like a "cluster of grapes."	l that the appears
Figure (21):	Sonographic appearance of supraction brachial plexus. S,M,I = superior, inferior trunks	middle,
Figure (22):	Sonoantomy at the infraclavicula location	
Figure (23):	Infraclavicular brachial plexus	97
Figure (24):	Sonoantomy at the axillary block The local anaesthetic spread is surrounding the plexus	viewed
Figure (25):	Sonographic view of axillary plexus.	

List of Figures (Cont...)

Figure No.	Title Pa	ge No.
Figure (26):	Axillary brachial plexus block	100
Figure (27):	Musculocutaneous nerve block	101
Figure (28):	Radial nerve block	102
Figure (29):	Ulnar nerve block	103
Figure (30):	Median nerve block	103
Figure (31):	Subgluteal approach for sciatic nerve block	x105
Figure (32):	Sonoanatomy of the subgluteal sciatic ne	erve .106
Figure (33):	Sonoanatomy in the popliteal fossa distal to the sciatic nerve bifurcates. Popliteal Artery	PA=
Figure (34):	Femoral nerve block	107
Figure (35):	Sonoanatomy of the femoral nerve block. The neurovascular structures from mediateral are the femoral vein, femoral rery, and the femoral nerve	dial oral
Figure (36):	Penile block Atlas of Regional Anesthesia, edition (1994) Appleton & Lang	

Introduction

Children suffer postoperative pain in the same way as adults. Frequently, factors such as fear, anxiety and lack of social support can exaggerate the physical pain in children further. The need for analgesics following surgery depends upon the nature of the procedure and the pain threshold of the patient. It does not depend on the age, or on whether the child is an inpatient or an outpatient (*Verghese and Hannallah*, 2005).

Pain assessment is a critical component of pain management. Assessing pain in young children, however, can be challenging. Self-reporting is only possible in older children or those with considerable cognitive and communicative abilities. Therefore, several tools and pain assessment scales should be available to provide qualitative and quantitative information and documentation of pain. The measurement of pain in infants, young children, and children with developmental disabilities who are unable to self-report is particularly challenging and needs increased attention (*O'Rourke*, *2004*).

The management of postoperative pain in children is based on a combination of local anaesthetic agents, simple analgesics, non-steroidal anti-inflammatory drugs (NSAIDs) and opioids. The use of multimodal analgesia reduces hospital stay, decreases medical complications, and increases patient satisfaction(*Llewellyn et al.*, 2000; Skinner, 2004).

The limited duration of analgesia after single blocks can be prolonged by use of adjuvants (clonidine, ketamine), catheter techniques or early use of systemic analgesics. Non-opioids (acetaminophen, non-steroidal anti-inflammatory drugs) are appropriate for patients with mild to moderate pain or as a component of multimodal pain therapy. Patient-controlled analgesia are convenient ways for opioid administration in infants and children (Sumpelmann and Munte, 2003).

Adequate pediatric pain management may improve both short- and long-term health outcomes for many years following surgical intervention. Currently, there are many reliable agents and techniques available to provide a safe and effective postoperative analgesia even in neonates and small infants (*Gold et al.*, 2006).

Aim of the Work

The objective of this Essay is to discuss current practice and recent advances in pediatric post-operative pain management in order to achieve safe and adequate analgesia for all patients.

Chapter (1): Pathophysiology of Pain

The International Association for the Study of Pain (IASP) defines pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage."

The American Pain Society (APS) in its Policy Statement on pain in children defines pain as "The result of a dynamic integration of biological processes, psychological factors and social/cultural factors considered within a developmental trajectory" (*Dubin and Patapoutian*, 2010).

Pain is classified as "structural pain," "pain associated with tissue damage which results in protective withdrawal reflexes to protect tissues from further damage" or "functional pain," pathological pain not associated with ongoing tissue damage(*Gold et al.*, 2006).

Also pain is anatomically classified into 3 categories: somatic pain (physiological and pathological), visceral, and neuropathic pain (*Dubin and Patapoutian*, 2010).

Anatomical classification and different pathways of pain

1) Somatic pain:

a) Physiological (first or 'fast') pain is a protective event that enables the person to localize pain rapidly, accurately, withdraw from the stimulus and to avoid or reduce further tissue

damage. It is produced by stimulation of high threshold thermo/mechanical nociceptors, which transmit action potentials by fast conducting (12–30 m/s) myelinated A δ fibres that enter the dorsal horn of the spinal cord and synapse at laminae I, V and X. Conduction continues along the secondary afferent fibres via the neospinothalamic tract, which is monosynaptic, as it ascends to the posterior thalamic nuclei. From there it synapses with tertiary afferents to the somatosensory post-central gyrus at the cortex. If the stimulus is of short duration and does not cause tissue damage, the pain disappears when the stimulus stops (*Farquhar and Smith*, 2007).

b)Pathophysiological (second or 'slow') pain is responsible for the delayed pain sensation that occurs after tissue injury (surgery, trauma, inflammation) and which encourages tissue healing by eliciting behavior to protect the damaged area. It originates from stimulation of the high threshold polymodal nociceptors (free endings) present in tissues. The nociceptors respond to mechanical, chemical and thermal stimuli and are transmitted via slow conducting (0.5–2 m/s) unmyelinated C fibers that synapse at laminae II and III (substantia gelatinosa) of the dorsal horn. Secondary afferents ascend cranially via the palaeospinothalamic tract, which is polysynaptic, as it ascends to medial thalamic nuclei. It has collaterals that also project to the midbrain, pontine and medullary reticular formations, the periaqueductal grey matter, and the hypothalamus, where they synapse into neurons that in turn project to forebrain limbic structures. This system is primarily involved with the reflex responses of pain (respiratory, circulatory, endocrine) (Farquhar and Smith, 2007).

2) Visceral pain:

The density of visceral nociceptors is <1% in comparison with somatic afferents, and the cortical mapping of visceral afferents is also less concentrated. Therefore, visceral pain is poorly localized, diffuse and often in the midline. The qualitative nature of the pain is also different because the viscera are sensitive to distension. Visceral pain also exhibits spatial summation, so that if a large area is stimulated, the pain threshold is lowered, this does not occur in cutaneous nociception. Visceral pain can also be referred to a site far away from the source of stimulation. It is often segmental and superficial, and frequently shows hyperalgesia e.g.(bladder pain can produce these effects in the perianal S2–4 dermatomes) (Serpell, 2006).

3) Neuropathic pain:

Neuropathic pain results from injury or disease of neurons in the peripheral or central nervous system e.g. diabetes mellitus and herpes zoster. This pain does not primarily signal noxious tissue stimulation and, therefore, feels abnormal. It often has a burning or electrical character and can be persistent or occur in short episodes. It might be combined with hyperalgesia and allodynia (*Schaible and Richter*, 2004).