

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

IN VITRO PHARMACOLOGICAL STUDY OF SOME DRUGS USED IN PENILE ERECTION DYSFUNCTION.

A thesis presented by **Amira Mostafa Helmy Senbel**

Bach. Pharm. Sci. (1998) Faculty of Pharmacy University of Alexandria

For the partial fulfillment of the degree of **Master of Pharmaceutical Sciences** (Pharmacology)

Department of Pharmacology Faculty of Pharmacy University of Alexandria 2002

THE SUPERVISORY BOARD

Prof. Dr. Fouad M. Sharabi

Professor of Pharmacology & Vice Dean

Prof. Dr. Tahia T. Daabees

Professor of Pharmacology

Dr. Mona Abdel Raouf El-Metwally

Lecturer of Pharmacology

Department of Pharmacology Faculty of Pharmacy University of Alexandria Egypt To my father, mother, Adham and Taymour,

ACKNOWLEDGEMENT

I would like to express my sincere appreciation, indebtedness and gratitude to Professor Dr. **Fouad Sharabi** and Professor Dr. **Tahia Daabees,** Professors of Pharmacology, Department of Pharmacology, Faculty of Pharmacy, University of Alexandria, for their valuable suggestions, guidance, and generous help. They also dedicated much of their effort and time for the revision of the thesis.

Equally, I wish to thank Dr. **Mona El Metwally**, Lecturer of Pharmacology, Department of Pharmacology, Faculty of Pharmacy, University of Alexandria, for her advice, continuous help and effort in revising the text.

Thanks are also due to all my professors in the Faculty for their ever present advice and encouragement.

Finally, I would like to thank my colleagues in the Department of Pharmacology, for their assistance and support and I wish to all of them a brilliant future and best of luck.

List of abbreviations

ACh Acetylcholine

cAMP Adenosine 3'-5'- cyclic monophosphate

ED Erectile dysfunction

EDRF Endothelium derived relaxing factor

EFS Electrical field stimulation

GC Guanylate cyclase

cGMP Guanosine 3'-5'- cyclic monophosphate

KCl Potassium chlorideL-NNA N^G-nitro-L-arginine

L-NAME N^G-nitro-L-arginine methyl ester

L-NMMA N^G-monomethyl-L-arginine

MB Methylene blue

NADPH Nicotinamide- adenine- dinucleotide phosphate

NANC Nonadrenergic Noncholinergic

NE Norepinephrine

NO Nitric oxide

NOS Nitric oxide synthase

PDE Phosphodiesterase

PE Phenylephrine

RCC Rabbit corpus cavernosum

SNP Sodium nitroprusside

List of contents

	Page
List of figures	, i
List of tables	v
Chapter 1. Introduction	
1.1.Erectile dysfunction	
1.1.1. Pathophysiology of erection	1
1.1.2. Anatomy of penile tissues	3
1.1.3. Physiology of erection	5
1.1.4. Neurophysiology of erection	6
1.1.4.1. Central control of penile erection	7
1.1.4.2. Peripheral control of penile erection	9
1.1.4.2.1. Adrenergic mechanisms	9
1.1.4.2.2. Cholinergic mechanisms	. 10
1.1.4.2.3. Nonadrenergic noncholinergic mechanisms	11
a- Nitric oxide	12
b- Neuropeptides	21
c- Prostanoids	. 22
d- Histamine	23
e- 5- Hydroxytryptamine	23
f- Adenosine triphosphate	23
1.1.4.2.4. Consequence of interference with ion channels	
a- Potassium channels	23
b- Calcium channels	24
1.1.4.2.5. Effect of sexual hormones	24
1.2. Drug therapy of erectile dysfunction	
1.2.1. Oral pharmacological therapy	25
1.2.1.1. Sildenafil	25

	1.2.1.2. Phentolamine	30	
-	1.2.1.3. Yohimbine	31	
	1.2.1.4. L-arginine	32	
	1.2.1.5. Apomorphine	32	
	1.2.1.6. Trazodone	33	
	1.2.1.7. Pentoxifylline	33	
	1.2.2. Intracavernosal drug therapy		
•	1.2.2.1. Papaverine	34	
	1.2.2.2. Alprostadil	35	
	1.2.2.3. Phentolamine	35	
	1.2.2.4. Linsidomine	36	
	1.2.3. Transdermal and transurethral pharmacological therapy		
	1.2.3.1. Nitroglycerin	36	
	1.2.3.2. Papaverine	37	
	1.2.3.3. Alprostadil	37	
	1.2.4. Hormone replacement therapy	37	
	1.2.5. Tentative Agents	38	
•	1.2.6. Future pharmacological interventions	38	
	Chapter 2. Aim of the work	39	
	Chapter 3. Materials and Methods	41	
	3.1. Materials		
	3.1.1. Animals	41	
	3.1.2. Drugs and reagents	41	
	3.1.3. Physiological solutions	44	
•	3.2. Methods		
	3.2.1. The isolated rabbit corpus cavernosum smooth muscle	45	
	3.2.2. The isolated field-stimulated rat anococcygeus muscle	- 47	
	3.2.3. The rat isolated aortic rings preparation	48	
	3.3. Experimental protocols	49	
	3.4. Statistical analysis	52	

.

Chapter 4. Results

4.1. Rabbit corpus cavernosum	
4.1.1. Characterization of electrical field stimulation-induced	
relaxation of RCC	54
4.1.2. Effect of sildenafil, phentolamine, yohimbine and L-arginine on	
the amplitude of electrical field stimulation-induced relaxation of RCC	54
4.1.3.Effect of combination of sildenafil and L-arginine on the	
amplitude of electrical field stimulation-induced relaxation of RCC	68
4.1.4. Effect of sildenafil on the duration of electrical field stimulation-	
induced relaxation of RCC	68
4.1.5. Relaxant effect of sildenafil, phentolamine, yohimbine and L-	
arginine on phenylephrine-precontracted strips of RCC	68
4.1.6. Relaxant effect of combination of sildenafil and L-arginine on	
phenylephrine-precontracted strips of RCC	79
4.1.7. Effect of sildenafil on sodium nitroprusside-induced relaxation	
of RCC	79
4.1.8. Effect of N ^G -nitro-L-arginine on sildenafil-induced relaxation of	
RCC	79
4.1.9. Relaxant effect of sildenafil on potassium chloride-induced tone	
n RCC	85
1.1.10. Effect of tetraethylammonium on sildenafil-induced relaxation	
ofRCC	85
1.1.11. Effect of prazosin, phentolamine and sildenafil on electrical	
ield stimulation-induced contraction of RCC	85
2.2. Rat anococcygeus muscle	
.2.1. Characterization of electrical field stimulation-induced	
elaxation of rat anococcygeus muscle	95
.2.2. Effect of sildenafil on the amplitude and duration of electrical	
ield stimulation-induced relaxation in the rat anococcygeus muscle	95
.2.3. Effect of prazosin, phentolamine and sildenafil on electrical	

 field stimulation-induced contraction of rat anococcygeus muscle	105
4.3. Rat aortic rings	
4.3.1. Relaxation of rat aortic rings by acetylcholine and its	
modulation by N ^G -nitro-L-arginine, methylene blue and denudation	109
4.3.2. Effect of sildenafil on acethylcholine-induced relaxation	109
4.3.3. Relaxation of rat aortic rings by the nitrovasodilator and its	
modulation by N ^G -nitro-L-arginine and methylene blue	115
4.3.4. Effect of sildenafil on sodium nitroprusside-induced relaxation	
of rat aortic rings	115
4.3.5. Vasorelaxant effect of sildenafil and its modulation by N ^G -nitro-	
L-arginine, methylene blue and denudation	115
4.3.6. Effect of sildenafil on phenylephrine-induced contraction	121
Chapter 5. Discussion	
5.1. Modulation of nitrergic transmission	123
5.2. Mechanism of sildenafil-induced muscle relaxation	132
5.3. Relative potencies of drugs under test on erectile functions of the	
corpus cavernosum	137
5.4. Effect of L-arginine on the relaxation of RCC	138
5.5. Role of phentolamine and yohimbine in erection	140
Chapter 6. Summary and conclusions	144
Chapter 7. References	146
· Chanter & Arabic summary	

List of figures

	Page
Figure 1: The structure of the penis as seen in a cross section of its body	4
Figure 2: Proposed mechanisms for nitric oxide synthesis and action in the penis	20
Figure 3: Representative tracing showing the effect of N ^G -nitro-L-arginine on nonadrenergic noncholinergic relaxations induced by electrical field stimulation on phenylephrine precontracted strips of rabbit corpus cavernosum.	55
Figure 4: Effect of N ^G -nitro-L-arginine on nonadrenergic noncholinergic relaxations induced by electrical field stimulation on phenylephrine precontracted strips of rabbit corpus cavernosum.	57
Figure 5: Representative tracing showing the effect of sildenafil on the amplitude of nonadrenergic noncholinergic relaxations induced by electrical field stimulation on phenylephrine precontracted strips of rabbit corpus cavernosum.	58
Figure 6: Effect of sildenafil on the amplitude of nonadrenergic noncholinergic relaxations induced by electrical field stimulation on phenylephrine precontracted strips of rabbit corpus cavernosum.	60
Figure 7: Effect of phentolamine on the amplitude of nonadrenergic noncholinergic relaxations induced by electrical field stimulation on phenylephrine precontracted strips of rabbit corpus cavernosum.	62
Figure 8: Effect of yohimbine on the amplitude of nonadrenergic noncholinergic relaxations induced by electrical field stimulation on phenylephrine precontracted strips of rabbit corpus cavernosum.	64
Figure 9: Effect of L-arginine on the amplitude of nonadrenergic noncholinergic relaxations induced by electrical field stimulation on phenylephrine precontracted strips of rabbit corpus cavernosum.	66
Figure 10: Effect of sildenafil, phentolamine, yohimbine and L-arginine on the amplitude of nonadrenergic noncholinergic relaxations induced by electrical field stimulation at 8 Hz on phenylephrine	67
precontracted strips of rabbit corpus cavernosum.	67