

Ain Shams University Faculty of Science

Preparation and Characterization of (Polyvinyl Alcohol / Gelatin) Blends for use as Drug Delivery

Presented by
Noha Mohamed El-Sayed Gweily

B.Sc. in Biophysics 2004
A thesis submitted as partial fulfilment of the requirement for the degree of Master of Science in Biophysics
Supervisors by

Prof. Dr. El-Sayed M. El-Sayed

Prof. of Biophysics Physics Department Faculty of Science Ain Shams University

Prof. Dr. Gamal S. El-Bahy

Prof. of Applied Spectroscopy Spectroscopy Department Physics Division National Research Centre

Dr. Abdel Aziz A. Abdel Aziz Mahmoud

Researcher of Molecular Spectroscopy Spectroscopy Department Physics Division National Research Centre.

> Ain Shams University Faculty of Science Department of physics (2012)

APPROVAL SHEET

Title of the M.Sc. Thesis

Preparation and Characterization of (Polyvinyl Alcohol / Gelatin) Blends for use as Drug Delivery

Name of the Candidate,

Noha Mohamed El-Sayed Gweily

<u>Supervisors</u>	(<u>Signature</u>)
Prof. Dr. El-Sayed M. El-Sayed	()
Prof. of Biophysics	
Physics Department	
Faculty of science	
Ain Shams University.	
Prof. Dr. Gamal S. El-Bahy	()
Prof. of Applied Spectroscopy	
Spectroscopy Department	
Physics Division	
National Research Centre	
Dr. Abdel Aziz A. Abdel Aziz Mahmoud	()
Researcher of Molecular Spectrosco	ору
Spectroscopy Department	
Physics Division	
Nation al Research Centre	
Name: Noha Mohamed El-S	Sayed
Gweily	

Thesis: "Preparation and Characterization

of (Polyvinyl Alcohol / Gelatin)

Blends for use as Drug Delivery"

Degree: Master

Department: Physics – Biophysics Group

Faculty: Science

University: Ain Shams

Graduation Date: 2004

Registration Date: 14/7/2008

Grant Date: 2012

تحضير و توصيف متوالفات البولى فينيل الكحولي/ الجيلاتين واستخدامها كناقلات دوائية

رسالة مقدمة من الطالبة نهى محمد السيد جويلى

بكالوريوس الفيزياء الحيوية 2004 الى قسم الفيزياء- كلية العلوم - جامعة عين شمس

للحصول على درجة الماجستير في علوم الفيزياء الحيوية

تحت اشراف

ا.د. جمال سعيد الباهى استاذ الأطياف وتطبيقاتها شعبة البحوث الفيزيقية المركز القومى للبحوث

ا.د. السيد محمود السيد استاذ الفيزياء الحيوية قسم الفيزياء كلية العلوم جامعة عين شمس

د. عبد العزيز عبد الحليم عبد العزيز محمود

باحث الأطياف الجزيئية شعبة البحوث الفزيقية المركز القومى للبحوث

> جامعة عين شمس كلية العلوم قسم الفيزياء (٢٠12)

رسالة ماجستير

اسم الطالبة: نهى محمد السيد جويلى

عنوان الرسالة: "تحضير و توصيف متوالفات البولى فينيل

الكحولي/الجيلاتين واستخدامها كناقلات دوائية"

الدرجة العلمية: ماجستير

لجنة الاشراف:

ا.د. السيد محمود السيد أستاذ الفيزياء الحيوية - قسم الفيزياء

كلية العلوم - جامعة عين شمس.

ا.د. جمال سعيد الباهي أستاذ الأطياف وتطبيقاتها- شعبة البحوث الفيزيقية - المركز القومي للبحوث

د. عبد العزيز عبد الحليم عبد العزيز باحث الأطياف الجزيئية شعبة البحوث الفزيقية المركز القومي للبحوث

لجنة التحكيم:

1- ا.د. منى مصطفى جمال استاذ الفيزياء الحيوية معهد امراض بحوث العيون

2- ا.د. خيرمى محمود تهامى غريبة استاذ الفيزياء الحيوية كلية العلوم جامعة الزهر بنين

3- ا.د.. السيد محمود السيد أستاذ الفيزياء الحيوية - قسم الفيزياء كلية العلوم - جامعة عين شمس.

تاريخ البحث / / <u>ا**لدر اسات العليا**</u>

ختم الاجازة أجيزت الرسالة بتاريخ / /

موافقة مجلس الكلية موافقة مجلس الجامعة 2012 / / 2012 / /

جامعة عين شمس كلية العلوم

اسم الطالبــة: نهى محمد السيد جويلى

عنوان الرسالة: "تحضير و توصيف متوالفات البولى فينيل الكحولي/ الجيلاتين واستخدامها كناقلات دوائية"

الدرجة العلمية: الماجستير

القسم التابع له: الفيزياء

الكليـــة: العلوم

الجامعة: عين شمس

سنة التخرج: ٢٠٠4

سنــة المنح: ٢٠١٤

عنوان الرسالة تحضير و توصيف متوالفات البولى فينيل الكحولي/ الجيلاتين واستخدامها كناقلات دوائية

رسالة مقدمة من الطالبة نهى محمد السيد جويلى بكالوريوس الفيزياء الحيوية 2004

List of Figures

Chapter I.	Introduction and Literature Review	page
Figure 1.1	Structural formula for gelatin	16
Figure 1.2	Structural formula for PVA: (A) partial hydrolyzed; (B) Fully hydrolyzed.	24

Chapter II		page
	Theoretical Aspect	
F: 0.1	Structures of the repeating units of some common	20
Figure 2.1	polymers.	39
	Schematic representations of the principal types of	
	liquidcrystal polymers (LCPs):	
Figure 2.2	(a) main-chain LCP and	42
	(b) side-chain LCP. The rectangles represent long stiff	
	groups.	

Chapter III	Materials and Methods	page
Figure 3.1	Jasco FTIR Spectrometer system which is used in the present work.	66
Figure 3.2	Schematic diagram for FTIR spectrometer indicating the optical path from the source into the sample.	66
Figure 3.3	Typical FTIR spectrum obtained from FTIR spectrophotometer.	68
Figure 3.4	Basic components of a computerized Jasco FTIR spectrometer system	68
Figure 3.5	: Film shape prepared for mechanical study	69
Figure 3.6	UV/Vis/NIR spectrometer system which is used to collect UV spectra	70
Figure 3.7	Optical path of a double beam double-detector system for UV- Vis Spectrometer.	71

Chapter IV	Result and discussion	page
Figure 4.1	FTIR absorption spectrum for PVA.	75
Figure 4.2	FTIR absorption spectrum for Gelatin.	77
Figure 4.3	FTIR absorption spectra for blend polymer.	80
Figure 4.4	Change in Elongation at break of PVA/Gel blend film with the different concentration of the blend material (%)	84
Figure 4.5	Change in T.S of PVA/Gel blend film with the different concentration of the blend material (MPa)	84
Figure 4.6	Change in Stress at break of PVA/Gel blend film with the different concentration of the blend material (MPa)	85
Figure 4.7	Change in Elongation at max of PVA/Gel blend film with the different concentration of the blend material (%)	85
Figure 4.8	Drug release profile as a result of PVA concentrations in blend films at half an hour	88
Figure 4.9	Drug release profile as a result of PVA concentrations in blend films at 1 hour	89
Figure 4.10	Drug release profile as a result of PVA concentrations in blend films at 1.5 hour	90
Figure 4.11	Drug release profile as a result of PVA concentrations in blend films at 2 hour	91
Figure 4.12	Drug release profile as a result of PVA concentrations in blend films at 2.5 hour	92

	Drug release profile as a result of PVA concentrations in	
Figure 4.13	blend films at 3 hour	92
	Drug release profile as a result of PVA concentrations in	0.2
Figure 4.14	blend films at 3.5 hour	93
	Drug release profile as a result of PVA concentrations in	
Figure 4.15	blend films at 4 hour	94
	Drug release profile as a result of PVA concentrations in	
Figure 4.16	blend films at 4.5 hour	95
	D 1 C1 1 CDVA	
Figure 4.17	Drug release profile as a result of PVA concentrations in	96
rigure 4.17	blend films at 5 hour	70
	Drug release profile as a result of PVA concentrations in	
Figure 4.18	blend films at 5.5 hour	97
	Drug release profile as a result of PVA concentrations in	
Figure 4.19	blend films at 6 hour	98
	Drug Release Profile as A result of PVA Concentration in	
Figure 4.20	Blend Films at 6.5 hour	99
	Drug Release Profile as A result of PVA Concentration in	
Figure 4.21	Blend Films at 7hour	100
	Drug release profile as a result of gelatin concentration in	
Figure 4.22	blend films at 1 minute	101
1 1501 € 7.22	oicha mins at i minute	101
	Drug release profile as a result of gelatin concentration in	
Figure 4.23	blend films at 2minute	102
	Drug release profile as a result of gelatin concentration in	
Figure 4.24	blend films at 3 minute	103

	Drug release profile as a result of gelatin concentration in	
Figure 4.25	blend films at 4 minute	104
	Drug release profile as a result of gelatin concentration in	
Figure 4.26	blend films at 5 minute	105
	Drug release profile as a result of gelatin concentration in	
Figure 4.27	blend films at 6 minute	106
	Drug release profile as a result of gelatin concentration in	
Figure 4.28	blend films at 8 minute	107
	Drug release profile as a result of gelatin concentration in	
Figure 4.29	blend films at 10 minute	107
	Drug release profile as a result of gelatin concentration in	
Figure 4.30	blend films at 12minute	108
	Drug release profile as a result of gelatin concentration in	100
Figure 4.31	blend films at 14 minute	108
	Drug release profile as a result of gelatin concentration in	
Figure 4.32	blend films at 16 minute	109
	Drug release profile as a result of gelatin concentration in	
Figure 4.33	blend films at 18minute	109
	Drug release profile as a result of gelatin concentration in	
Figure 4.34	blend films at 20 minute	110
7.	Drug release profile as a result of gelatin concentration in	440
Figure 4.35	blend films at 22 minute	110
	Drug release profile as a result of gelatin concentration in	
Figure 4.36	blend films at 24 minute	111
	Drug release profile as a result of gelatin concentration in	
Figure 4.37	blend films at 26 Minute	112

	Drug release profile as a result of gelatin concentration in	
Figure 4.38	blend films at 28 minute	112
	Drug release profile as a result of gelatin concentration in	
Figure 4.39	blend films at 30 minute	113
	Drug release profile as a result of gelatin concentration in	
Figure 4.40	blend films at 32minute	113
	Drug release profile as a result of gelatin concentration in	
Figure 4.41	blend films at 34minute	114
	Drug release profile as a result of gelatin concentration in	
Figure 4.42	blend films at 36 minute	114
	Drug release profile as a result of gelatin concentration in	
Figure 4.43	blend films at 38 minute	115
	Drug release profile as a result of gelatin concentration in	
Figure 4.44	blend films at 40 minute	115
	Drug release profile as a result of gelatin concentration in	
Figure 4.45	blend films at 42 minute	116
	Drug release profile as a result of gelatin concentration in	
Figure 4.46	blend films at 44 minute	116
	Drug release profile as a result of gelatin concentration in	
Figure 4.47	blend films at 46 minute	117
Figure 4 49	Drug release profile as a result of gelatin concentration in	117
Figure 4.48	blend films at 48 minute	117
T-1 4 40	Drug release profile as a result of gelatin concentration in	110
Figure 4.49	blend films at 50 minute	118
	Drug release profile as a result of gelatin concentration in	
Figure 4.50	blend films at 52 minute	118
I	I	l

List of Tables

Chapter III	Materials and Methods	page
		pg.
Table (3-1)	Prepared films which are used in Mechanical measurements.	63
Table (3- 2)	Prepared films which are used in FTIR measurements.	64

Chapter IV	Result and discussion	
		page
Table (4-1)	FTIR absorption bands of PVA.	76
Table (4-2)	FTIR absorption bands of gelatin.	78
Table (4-3)	Mechanical properties of PVA/ gelatin blend films	83