

AIN SHAMS UNIVERITY FACULTY OF ENGINEERING

Electronics and Electrical Communications Engineering

Retinal Image Analysis using Image Processing Techniques

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Electrical Engineering (Electronics and Electrical Communications Engineering)

By

Lamiaa Sayed BaheyelDin AbdelHamid

Master of Science in Electrical Engineering (Electronics and Electrical Communications Engineering) Faculty of Engineering, Ain Shams University, 2010

Supervised By

Prof. Dr. Salwa Hussein El-Ramly

Electronics and Electrical Communications Engineering

Dr. Ahmed Mohamed Ibrahim El-Rafei

Engineering Physics and Mathematics Department

Cairo -(2017)

Statement

This thesis is submitted in partial fulfillment of Doctor of Philosophy in Electrical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Lamiaa Sayed BaheyelDin AbdelHamid
Signature

Date: 20 January 2017

Researcher Data

Name : Lamiaa Sayed BaheyelDin

AbdelHamid

Date of birth : 21/03/1982

Place of birth : Giza

Last academic degree : Master of Science in Electrical

Engineering

Field of specialization : Electronics and Electrical

Communications Engineering

University issued the degree : Ain Shams University

Date of issued degree : 22/12/2010

Current job : Teaching Assistant at the

Department of Electronics and Communications, Faculty of Engineering, Misr International

University (MIU)

Thesis Summary

Automatic retinal screening systems (ARSS) facilitate wide and periodic screening of the huge numbers of candidate ocular patients, recommending professional treatment only when early disease symptoms are detected. Early detection and proper treatment of silent retinal diseases, such as diabetic retinopathy, can prevent or delay severe visual impairments that result from advanced disease progressions. However, the reliability of these systems was found greatly dependent on the quality of the processed retinal images. In this thesis, a no-reference comprehensive wavelet-based retinal image quality assessment (RIQA) algorithm is introduced that is intended for early diabetic retinopathy diagnosis using ARSS.

Initially, RIQA was performed based on the intuition that good quality retinal images have sharp retinal structures. Wavelet decomposition has the advantage of separating an image's sharpness information equivalent to high frequency components within its detail subbands. Moreover, multiresolution analysis brings out the finer image details related to the different retinal structures within the various wavelet levels. Consequently, retinal image sharpness features were calculated from the detail subbands of five level wavelet decompositions. The sharpness features were tested on two datasets of different resolutions and degree of blur resulting in an area under the receiver operating characteristic curve (AUC) of 1.000 and 0.985 for the low resolution severely blurred and the high resolution slightly blurred retinal datasets, respectively. For the high resolution dataset, the introduced features achieved an AUC that is between ~10-20% higher than other RIQA algorithms from literature while requiring 5-10 times less computation time.

Next, the effect of image resolution on the introduced waveletbased features as well as on several RIQA algorithms was studied. Specifically two cases were considered, the case when both training and testing image resolutions were similarly varied and the case at which the training and testing dataset images had different resolutions. This study showed that the performance of RIQA algorithms can be significantly affected in the latter case. For the proposed wavelet-based RIQA algorithm, two methods were introduced and validated that permit maintaining high classification performance in cases of different training and testing image resolutions. In cases of large resolution differences, the wavelet-based algorithm's performance was improved by up to a 100% by the suggested methods.

Finally, a comprehensive framework was developed that considers five common quality issues for retinal image quality evaluation. Wavelet-based features were implemented for image sharpness, illumination, homogeneity, and field definition assessment whereas color information was used to separate retinal and non-retinal images. Furthermore, a new proposed saturation channel was created specifically for retinal image homogeneity evaluation. Classification performance for each of the five quality feature sets resulted in AUCs higher than 0.99. The overall RIQA algorithm, combining the five quality feature sets, achieved an AUC of 0.927 which is between 2.0-4.5% higher than several other algorithms from literature.

Wavelet-based RIQA algorithms are being recently adopted for RIQA. However, existing RIQA algorithms do not take full advantage of the wavelet transform's multiresolution capabilities or the relation between the retinal structures and the various levels. Moreover, these algorithms utilize wavelet-based features only for retinal image sharpness assessment. In this thesis, multilevel wavelet decomposition was exploited to evaluate several quality issues within retinal images. The introduced wavelet-based RIQA algorithm overcomes limitations within other more commonly implemented RIQA methods by comprehensively evaluating retinal image quality,

considering structural information for quality assessment, requiring small processing time, in addition to achieving reliable performance for different image resolutions and quality grades. Consequently, the introduced wavelet-based RIQA algorithm is highly suitable for integration within real-time ARSS.

Keywords Retinal image quality assessment, wavelet transform, retinal image resolution, automated retinal screening systems, biomedical imaging

Acknowledgments

All praise to Allah, the Most Merciful the Most Gracious.

I would like to express my sincere thanks to my supervisor Prof. Dr. Salwa El-Ramly for her continuous guidance and support throughout my PhD studies. I am profoundly grateful to my supervisor Dr. Ahmed El-Rafei for his massive efforts, elaborate guidance, and continuous motivation.

My appreciation to the faculty staff in Misr International University for their invaluable support and fruitful advice. Special thanks to my close friends for their help and encouragement.

My sincere thanks to Dr. Abdel-Aziz Reyad for his generous assistance in helping me bridge the gap between the engineering and medical aspects related to this work.

And last but not least, my heartfelt and infinite gratitude to my parents for their substantial support and guidance in every aspect making it all so much easier.

"But I have discovered the secret, that after climbing a great hill, one only finds that there are many more hills to climb."

- Nelson Mandela, Long Walk to Freedom

Contents

List of Figures List of Tables List of Abbreviations			vi
			X
			xiii
L	List of Symbols		
1	Ove	erview	1
	1.1	Motivation	1
	1.2	Contributions	3
	1.3	Publications	4
	1.4	Thesis Organization	5
2	Bac	ckground	7
	2.1	Eye Structure	7
	2.2	Fundus Retinal Imaging	9
	2.3	Retinal Pathologies	11
		2.3.1 Diabetic Retinopathy	12
		2.3.2 Age-Related Macular Degeneration	14
		2.3.3 Glaucoma	15
		2.3.4 Cardiovascular Diseases	17
	2.4	Automated Retinal Screening Systems	17
	2.5	Summary	18

3	Reti	inal Image Quality Assessment	19
	3.1	Introduction	19
	3.2	Retinal Image Quality	20
	3.3	Types of RIQA Measures	22
	3.4	Challenges in RIQA	23
	3.5	Evaluation Metrics	24
	3.6	Summary	26
4	Lite	erature Review	27
	4.1	Review on Retinal Image Clarity Assessment	27
		4.1.1 Spatial Domain RIQA	28
		4.1.2 Transform Domain RIQA	29
	4.2	Review on Retinal Image Content Assessment	35
	4.3	Summary	36
5	Way	velet-based RIQA Algorithm	37
	5.1	Introduction	37
	5.2	Materials	38
	5.3	Methods	38
		5.3.1 Preprocessing	38
		5.3.2 Wavelet Features	39
		5.3.3 Sharpness Measure	40
		5.3.4 Contrast Measure	41
	5.4	Wavelet Level and Regional Analysis	42
		5.4.1 Wavelet Level Analysis	42

		5.4.2 Regional Analysis	.43	
	5.5	5.5 Results		
		5.5.1 DRIMDB Results	.44	
		5.5.2 HRF Results	.45	
		5.5.3 Run-time Results	.48	
	5.6	Discussion	. 48	
	5.7	Conclusions	. 52	
6	Effe	ct of Resolution on the Performance RIQA Algorithms	. 55	
	6.1	Introduction	. 55	
	6.2	Materials	. 58	
	6.3	Image Resolution Analyses	. 60	
		6.3.1 Effect of Dataset Resolution on RIQA Algorithms	. 61	
		6.3.2 Effect of Different Train and Test Image Resolutions on RIQA Algorithms	. 62	
	6.4	Modified Wavelet Based RIQA Algorithm		
	6.5	Results of the Modified Wavelet RIQA Algorithm		
	6.6	Discussion	. 71	
	6.7	Conclusions	. 73	
7	RIC	A Based on Image Clarity & Content	. 75	
	7.1	Introduction	. 75	
	7.2	Materials	. 76	
	7.3	Methods	. 77	
		7 3 1 Sharpness	.79	

7.3.	2 Illumination81
7.3.	3 Homogeneity82
	7.3.3.1 Retinal saturation channel homogeneity features83
	7.3.3.2 Wavelet-based homogeneity features86
7.3.	Field Definition88
7.3	5 Outliers91
7.4 Res	sults92
7.4.	1 Sharpness Algorithm Classification Performance94
7.4.	2 Illumination Algorithm Classification Performance97
7.4.	3 Homogeneity Algorithm Classification Performance97
7.4.	4 Field Definition Algorithm Classification Performance98
7.4.	5 Outlier Algorithm Classification Performance98
7.4.	6 Overall Quality Classification Results99
7.5 Di	scussion101
7.5.	1 Sharpness Algorithm Analysis
7.5.	2 Illumination and Homogeneity Algorithms Analyses 105
7.5.	Field Definition and Outliers Algorithms Analyses 108
7.5.	4 Overall RIQA Algorithm Analysis109
7.6 Con	clusions111
8 Conclus	sions and Future Work113
Appendix	Color Models119
A.1 RC	GB Color Model119
A.2 CI	ELab Color Model120

A.3	HSV & HSI Color Models	5
Refere	ences	125

List of Figures

2.1	Eye Structure [10]7
2.2	Un-dilated vs. dilated pupils [10]9
2.3	Example of retinal image from MESSIDOR [11]10
2.3	Color retinal image from DRIMDB [16] (row1) along with its red, green and blue color channels (row2)11
2.4	Effect of DR on human vision (a) normal vision and (b) the same scene as may be viewed by a person with DR [10]12
2.5	Example of retinal images with (a) NPDR and (b) PDR [22]
2.6	Effect of AMD on human vision (a) normal vision and (b) the same scene as may be viewed by a person with AMD [10]14
2.7	Examples of (a) intermediate and (b) advanced AMD [10]
2.8	Effect of glaucoma on human vision (a) normal vision and (b) the same scene as may be viewed by a person with glaucoma [10]16

2.9	Examples of (a) normal OD and (b,c) glaucomic ODs with different disease severity [10]	16
3.1	Examples of (a) good quality and (b-d) bad quality retinal images from DRIMDB [16]	21
4.1	Wavelet Decomposition	30
4.2	Orignal image (right) & its single level wavelet decomposition (left)	31
4.3	Three level wavelet decomposition using DecWT	32
4.4	Three level wavelet decomposition using UWT (from above L1, L2 & L3)	32
5.1	Level 2 green channel detail subbands of sharp (first row) and blurred (second row) retinal images from DRIMDB [16]	40
5.2	Examples of (a) thick and (b) thin retinal vessels from HRF [55]	43
5.3	Retinal image showing local region	43
5.4	Examples of (a) good (b) bad quality images from DRIMDB [16]	45
5.5	Examples of (a) good and (b) bad quality images from HRF [55]	46