Thermal Analysis of Horizontal and Vertical Falling Film Evaporators in MED Desalination System

By

Mohamed Mahmoud Mohamed Ibrahim Abo-Aish

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Mechanical Power Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

Thermal Analysis of Horizontal and Vertical Falling Film Evaporators in MED Desalination System

By

Mohamed Mahmoud Mohamed Ibrahim Abo-Aish

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Mechanical Power Engineering Under Supervision of

Prof. Dr. Abdalla Sayed Hanafi

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Dr. Galal Mostafa

Mechanical Power Engineering

Department

Faculty of Engineering

Cairo University

Dr. Omar Ahmed Huzayyin

Mechanical Power Engineering

Department

Faculty of Engineering

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Thermal Analysis of Horizontal and Vertical Falling Film Evaporators in MED Desalination System

By

Mohamed Mahmoud Mohamed Ibrahim Abo-Aish

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Mechanical Power Engineering

Approved by the Examining Committee

Prof. Dr. Abdalla Sayed Hanafi , Thesis Main Advisor

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University.

Prof. Dr. Abdel-Wahed Fouad El-Dib

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University.

Prof. Dr. Mahmoud Abdel-Fatah El-Kady

Professor of Mechanical Engineering, Faculty of Engineering, Al Azhar University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Engineer: Mohamed Mahmoud Mohamed Ibrahim Abo-Aish

Date of Birth: 2 / 3 / 1988

Nationality: Egyptian

E-mail: moh.aboaish@yahoo.com

Phone: +2 01000875583

Address: 306 El Sudan Street – El Mohandesen – Egypt

Registration Date: 1 / 10 / 2010

Awarding Date: / / 2016

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Abdalla Sayed Hanafi

Dr. Galal Mostafa

Dr. Omar Ahmed Huzayyin

Examiners:

Prof. Dr. Abdalah Sayed Hanafi

Prof. Dr. Abd Elwahed Fouad El-Dib

Prof. Dr. Mahmoud Abd ElFatah El-Kady (Faculty of Engineering– Azhar University)

Title of Thesis:

Thermal Analysis of Horizontal and Vertical Falling Film Evaporators in MED

Desalination System

Key Words:

Falling film Evaporator, Horizontal Tubes Evaporator, Vertical Tubes Evaporator, Desalination, Thermo-Economic.

Summary:

The object of this study to Perform thermal analysis for horizontal and vertical falling film evaporators which used in Multiple Effect Distillation system under different operating conditions with variation of input parameters to investigate heat transfer area of each evaporator also focused on comparison between horizontal and vertical falling film evaporator to investigate the performance of each configuration under different operating conditions. Estimating the size required to fulfill the input heat load and comparing the capital costs of each evaporator configuration with using different profiles of tubes.

بسم الله الرحمن الرحيم

"وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلا قَلِيلا" (٨٥) الإسراء

حدق الله العظيم

''And of knowledge, you (mankind) have been given only a little'',
Al-Isra', verse 85.

ACKNOWLEGMENT

All praise and gratitude is due to ALLAH, Lord of the world.

I hereby would like to express my deep gratefulness and thanks to Prof. Dr. Abdalla Sayed Hanafi, Dr. Omar Huzayyin and Dr. Galal Mostafa and for their support, continuous encouragement and distinctive supervision throughout the course of this work.

Many thanks to Misr El-Khir for its continuous support and cooperation.

Words cannot express how grateful Eng. Ahmed Hamed, Eng. Abdel-rahman Ahmed, Eng. Ahmed Yahia Yousef and Eng. Ahmed Ibrahim from Mechanical power department for their great and continuous support and encouragement.

Nevertheless, I cannot forget the help and useful comments of my friends, Shrief Gomaa and Mohamed Bayomi as well as my workmate Eng. Mohamed Osman.

Last but not the least; I would like to express my warm thanks to my parents, wife, sister and brother for their support, understanding and encouragement as faithful companions.

TABLE OF CONTENTS

ACKN	NOWLEDGMENT	I
TABL	E OF CONTENTS	III
LIST (OF TABLES.	VI
LIST (OF FIGURES	VII
NOME	ENCLATURE	XIII
ABST	RACT	XVI
СНАР	PTER I INTRODUCTION	
1.1	General.	1
1.2	Water Shortage Problem.	1
1.3	Sources of Fresh Water	2
1.4	Types of Water	4
1.5	Need for Water Desalination.	5
1.6	Classification of Desalination Processe.	8
1.7	History of Multiple Effect Distillation (MED) System	12
1.8	MED Process Description.	13
1.9	Evaporators	15
1.9.1	Evaporator Basics	15
1.9.2	Evaporator Types	16
1.10.	Horizontal Tubes Falling Film Evaporator	19
1.10.1	Design Consideration.	20
1.10.2	Modes of Falling Film of Feed Water.	21
1.10.3	Film Breakdown	22

1.10.4	Brine Distribution System	23
1.10.4	.1 Brine Distribution by Sieve Trays	23
1.10.4	.2 Brine Distribution by Nozzles.	25
1.11	Vertical Tubes Falling Film Evaporator	25
1.12	Water Sources in Egypt.	27
1.13	Desalination Profile in Egypt.	27
1.14	Thesis Outline	30
CHAI	PTER II LITERATURE REVIEW	
2.1	General	31
2.2	Horizontal Falling film Evaporator Studies	31
2.3	Further Work Done on Vertical Falling Film Evaporators	31
2.4	Discussion of Falling Film Evaporation on Horizontal Tube	34
2.5	Vertical Falling Film Evaporator Studies.	35
2.6	Boiling Point Elevation.	36
2.7	Simulation Tools.	37
2.7.1	MEE Simulator.	37
2.7.2	DEEP Code	38
2.7.3	Camel Pro.	38
2.7.4	Engineering Equation Solver (EES).	38
2.8	Remarks and Scope of the Present Work	40
CHAI	PTER III GOVERNING EQUATIONS	
3.1	Introduction	41
3.2	Evaporator Mass and Energy Balance	41

3.3	Falling Film Evaporation in Horizontal Tube	43
3.3.1	Stage Model and Heat Transfer Coefficients	44
3.3.2	Inter Tube Falling Film Modes.	44
3.3.3	Calculation of Heat Transfer Coefficient for Horizontal Tubes Evaporator	47
3.4	Falling Film Evaporation Inside Vertical Tube	49
3.4.1	Calculation of Heat Transfer Coefficient for Vertical tubes Evaporator	49
3.5	Two Phase Flow Pressure Drop Calculation	51
3.6	Evaporator Inlet and Physical Conditions	54
СНАІ	PTER VI RESULTS AND DISCUSSIONS	
4.1	Introduction	55
4.2	Sizing of the Horizontal and Vertical Falling Film Evaporators	55
4.3	Performance Analysis of Horizontal Falling Film (HFF) Evaporator	56
4.3.1	Effect of Heating Steam Flow Rate on HFF Evaporator Performance	57
4.3.2	Effect of Heating Steam Temperature on HFF Evaporator Heat Transfer	
	Surface Area	58
4.3.3	Effect of Feed Water Flow Rate on HFF Evaporator Performance Ratio	59
4.3.4	Effect of Heating Steam Flow Rate on HFF Evaporator Heat Transfer Area	59
4.4	Comparisons of the Present Work with Ettouney [88] for HFF Evaporator	60
4.5	Performance Analysis of Vertical Falling Film VFF Evaporator	62
4.5.1	Effect of Heating Steam Flow Rate on VFF Evaporator Performance Ratio	62
4.5.2	Effect of Heating Steam Temperature on VFF Evaporator Heat Transfer	
	Surface Area.	63
4.5.3	Effect of Feed Water Flow Rate on VFF Evaporator Performance Ratio	64

4.6	Comparisons of the Present Work with Sagharichiha [89] for VFF	
	Evaporator	.65
4.7	Comparison between Horizontal and vertical Falling Film Evaporator	65
4.7.1	Effect of Heating Steam Temperature on Heat Transfer Area	66
4.7.2	Effect of Heating Steam Flow Rate on Heat Transfer Area	66
4.7.3	Effect of Feed Water Mass Flow Rate on Performance Ratio	67
4.7.4	Effect of Heating Steam Mass Flow Rate on Performance Ratio	68
4.7.5	Variation Product Flow Rate with Top Brine Temperature	.69
4.7.6	Variation of product mass flow rate with feed water mass flow rate	70
4.8	Economic Analysis for Horizontal and Vertical falling film evaporators	71
4.8.1	Criteria for the Selection of the Evaporator.	72
4.8.2	Cost of Desalination and Factors Affecting Product Cost	72
4.8.3	Cost Analysis of Desalination Systems.	73
4.8.4	Capital Cost Comparison between HFF and VFF Evaporators in Egypt	75
4.8.4.1	Effect of Heating steam Flow Rate on HFF and VFF Evaporators	
	Capital Cost	76
4.8.4.2	Effect of heating steam temperature on HFF and VFF evaporators	
	Capital Cost	.77
4.8.4.3	Variation of HFF and VFF Evaporator Capital Cost with Different Types of	
	Evaporator Tubes	77
4.8.4.4	Variation of HFF and VFF Evaporators Heat Transfer Surface Area with	
	Different Types of Evaporator Copper Tubes	78

APPE	NDIX	91
REFERENCES		84
5.2	Recommendations and Proposed Future Work.	83
5.1	Conclusions	82
СНАРТ	TER V CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS	
4.8.4.6	Effect of Heat Input Load on HFF and VFF Evaporators Capital Cost	81
	of Evaporator Copper Tubes.	80
4.8.4.5	Variation of HFF and VFF Evaporator Total Annual Cost with Different Types	

LIST OF TABLES

Table (1.1)	Distribution of the water resources across the world [7]	3
Table (1.2)	Water classification based on salinity content [4]	5
Table (1.3)	Water demand and desalination capacity in the Red Sea and	
	South Sinai [85]	.30
Table (3.1)	Summery inlet and physical conditions for the case under study	.54
Table (4.1)	Summery of output sizing parameters for the case under study	.56
Table (4.2)	Comparison between present work and Ettouney [88] for result	
	of HFF Evaporator design parameters	61
Table (4.3)	Comparison between present work and Sagharichiha [89] for	
	VFF evaporator results of design	65
Table (4.4)	Copper tubes types and dimensions [30]	.75
Table (4.5)	Capital cost of HFF and VFF evaporator with different types of copper	
	tubes of evaporator	.79
Table (4.6)	Total annual cost of HFF and VFF evaporator with different types of	
	copper tubes of evaporator	80

LIST OF FIGURES

Figure (1.1)	Variation in world population from 1823 to 2025 [2]	2
Figure (1.2)	Desalination market shares of large producers (2009) [10]	6
Figure (1.3)	Market share of the main desalination process for desalination of	
	River and brackish water (2009) [10]	7
Figure (1.4)	Market share of the main desalination process for desalination	
	of seawater (2009) [10]	7
Figure (1.5)	Desalination technologies classification based on what is extracted	
	from the feed stream [6]	10
Figure (1.6)	The classification based on the type of energy used [6]	11
Figure (1.7)	Multiple effect distillation system with thermal vapor compression [16]	13
Figure (1.8)	Configuration of Multiple Effect Distillation [22]	14
Figure (1.9)	Natural/forced evaporator [9]	16
Figure (1.10)	Vertical falling film evaporator [8]	17
Figure (1.11)	Horizontal Falling film evaporator [8]	18
Figure (1.12)	Plate Falling Film evaporator [29]	19
Figure (1.13)	Distribution of Falling film over the horizontal tube	21
Figure (1.14)	Photographs of falling film flow modes on plain tubes [31]	22
Figure (1.15)	Wetting lengths for a single hole for a horizontal tube [34]	24
Figure (1.16)	Typical arrangement of a sieve tray above a tube bundle [12]	24
Figure (1.17)	Evaporation in a falling film evaporator tube [26]	26

Figure (1.18)	Installation of desalination capacities in Egypt [83]28
Figure (1.19)	New capacity capacities in Egypt (1980-2005) [86]29
Figure (2.1)	Three-zone model of Fujita and Tsutsui [33]
Figure (3.1)	Flow diagram for the evaporator
Figure (3.2)	Falling film evaporation on a heated horizontal tube with nucleate
	boiling [25]
Figure (3.3)	Laminar condensation within a horizontal tube [44]48
Figure (4.1)	Variation HFF evaporator performance ratio with Heating steam mass
	flow rate at various mass flow rate of feed water57
Figure (4.2)	Effect of Heating Steam Temperature on Heat transfer area of Horizontal
	evaporator at various mass flow rate of heating steam58
Figure (4.3)	Effect of Feed water temperature on Horizontal evaporator performance
	ratio at various feed water mass flow rate
Figure (4.4)	Effect of heating steam flow rate on Heat transfer area of Horizontal
	evaporator at various saturated temperature of heating steam60
Figure (4.5)	Effect of Heating steam mass flow rate on VFF evaporator performance
	ratio at various mass flow rate of feed water
Figure (4.6)	Effect of heating steam temperature on VFF evaporator heat transfer
	area at various mass flow rate of heating steam
Figure (4.7)	Variation VFF evaporator performance ratio with Feed water mass
	flow rate at various mass flow rate of feed water

Figure (4.8)	Effect of heating steam temperature on heat transfer area for HFF	
	and VFF Evaporators.	66
Figure (4.9)	Effect of heating steam flow rate on heat transfer area for HFF and	
	VFF Evaporators	67
Figure (4.10)	Effect of feed water mass flow rate on performance of HFF and	
	VFF Evaporators	68
Figure (4.11)	Effect of heating steam mass flow rate on performance of HFF	
	and VFF Evaporators	69
Figure (4.12)	Variation product flow rate with HFF and VFF evaporator top brine	
	temperature	70
Figure (4.13)	Variation of product mass flow rate for HFF and VFF with feed water	
	mass flow rate	71
Figure (4.14)	Effect of heating steam flow rate on HFF and VFF Evaporators	
	capital cost	76
Figure (4.15)	Effect of heating steam temperature on HFF and VFF Evaporators	
	capital cost	77
Figure (4.16)	Variation of HFF and VFF evaporator capital cost with different	
	types of evaporator copper tubes	78
Figure (4.17)	Variation of HFF and VFF evaporator heat transfer surface area	
	with different types of evaporator copper tubes	79