

NUMERICAL INVESTIGATION FOR AIR FLOW AND THERMAL COMFORT IN AN AIR-CONDITIONED OPEN FOOTBALL (SOCCER) STADIUM

By

Eng. Mohammed Sobhi Atiia Shaikhoun

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

NUMERICAL INVESTIGATION FOR AIR FLOW AND THERMAL COMFORT IN AN AIR-CONDITIONED OPEN FOOTBALL (SOCCER) STADIUM

By

Eng. Mohammed Sobhi Atiia Shaikhoun

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil
Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Dr. Gamal El-Hariry
Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Dr. Esmail El-Bialy Mechanical Power Engineering Department Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

NUMERICAL INVESTIGATION FOR AIR FLOW AND THERMAL COMFORT IN AN AIR-CONDITIONED OPEN FOOTBALL (SOCCER) STADIUM

By

Eng. Mohammed Sobhi Atiia Shaikhoun

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil

Thesis Advisor and Member

Prof. Dr. Mahmoud Ahmed Fouad Member

Prof. Dr. Osama Ezzat Abdellatif Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Acknowledgment

First, I would like to prostrate and praise to THE ALMIGHTY ALLAH whose blessing, guide, and mercy have been behind whatever success may have been achieved in this work. I am eternally grateful that His blessings have come in the form of family and friends who have supported me in all my endeavours.

I would like to express my sincere appreciation and infinite thanks to **Prof.Dr. Essam E. Khalil** who gave me a great scientific support and guidance to make a progress in my research. Besides, having severe admiration of his gigantic experience and unlimited co-operation and efforts of helping me to introduce this research in the best way.

Also, I would like to express my deep gratitude and thanks to **Dr. Gamal El-Hariry** for his support and distinctive supervision throughout this work.

Special thanks to **Dr. Esmail El-Bialy** for his patience, guidance, valuable advices and kind support throughout the preparation of this thesis.

Finally, I don't forget to give my sincere thanks to my family for their continuous encouragement, support and care during the whole period of preparing the thesis.

TABLE OF CONTENTS

ACKNOWLEDGMENT	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	v
LIST OF TABLES	xiv
NOMENCLATURE	XV
GREEK LETTERS	xvi
SUPERSCRIPTS AND SUBSCRIPTS	xvii
ABBREVIATIONS	xvii
ABSTRACT	xviii
CHAPTER (1): INTRODUCTION	1
1.1 General	
1.2 Outdoor Thermal Comfort	
1.3 Definition of Thermal Comfort	
1.4 Importance of Thermal comfort	
1.5 Factors Affecting Thermal Comfort	
1.5.1 Environmental Factors	
1.5.2 Personal Factors	
1.6 Some Other Factors	7
1.7 Scope of the Present Thesis Work	7
CHAPTER (2): LITERATURE REVIEW	
2.1 Introduction	
2.2 Literature Work Concerns With the Thermal Environment in the Enclo	
Facilities	1
2.3 Literature Work Concerns With the Thermal Environment in the O	
Facilities	
CHAPTER (3): REVIEW OF THERMAL COMFORT	
3.1 Introduction	
3.2 Outdoor Thermal Comfort	
3.2.1 Outdoor Thermal Comfort Research Issue	
3.2.2 Outdoor and Indoor Thermal Comfort Conditions	
3.2.2.1 Clothing Variation	
3.2.2.2 Wind Speed	
3.2.2.3 Effect of Relative Humidity	
3.2.3 Relative Effects of Air Temperature, Solar Radiations and Wind	•
Thermal Sensation	
3.2.4 Comfort and Thermal Sensation.	
3.2.5 Actual Sensation Vote (ASV)	
3.2.5.1 Adaptation	
3.2.5.3 City Comfort Index	
3.3 Outdoor thermal Comfort Models	
3.3.1 Fanger's PMV Model	

		3.3.2 PET Model	74
		3.3.3 SET* Model	75
		3.3.4 Comparison Between PMV and SET	75
C	CHA	PTER (4): MATHEMATICAL MODELLING	.77
	4.1	Introduction	77
	4.2	Governing Equations	78
		4.2.1 Mass Conservation	78
		4.2.2 Momentum Equation	79
		4.2.3 Energy Equation	80
	4.3	Turbulence Modelling	81
		4.3.1 The Standard k - ε Model	84
		4.3.1.1 Modelling Turbulent Production in the Standard k - ε Model	
		4.3.1.2 Convective Heat and Mass Transfer Modelling in Standard k - ε Model	
	4.4	Near-Wall Treatments for Wall-Bounded Turbulent Flows	
		4.4.1 Standard Wall Functions.	
		Grid Generation and Mesh Criteria	
	4.6	Discretization and Mathematical Modelling	
		4.6.1 Introduction	
		4.6.2 Steps of the Numerical Solution	
		4.6.3 Solution Algorithm	
		Case Geometry	
		Mesh Generation	
	4.9	Boundary Conditions	
		4.9.1 Wind and Outside Temperature	
		4.9.2 Walls	
		4.9.3 Supply Jets	
		4.9.4 Human Body	
	1 1/	4.9.5 Playground Grass	
_		O Studied Planes	
(PTER (5): CFD MODELLING VALIDATION	
		Introduction	
		Description of the Gymnasium and HVAC System	
		Simulation With STACH-3	
		Simulation With Fluent	
	5.5	Arrangement of the Measuring Points for the Experimental Results	101
	5.6	Experimental Results	102
	5.7	Validation	103
		5.7.1 Experimental Versus Fluent Results	103
		5.7.2 Experimental Results Versus FLENT and STACH-3 Results	
	5.8	Conclusions on Validation1	
C	CHA	PTER (6): ANALYSIS OF THE PRESENT RESULTS	107
		Results of the 2-D Model	
		6.1.1 Model Description and Boundary Conditions	
		6.1.2 Effect of Canopy Length	
		6.1.3 Effect of Stadium Outer Side Shape	

6.2 Results of the 3-D Model	117
6.3 Grid Independency Check	117
6.4 Studied Cases	120
6.4.1 Case (1): (Main Case-First configuration)	120
6.4.2 Case (2): (Main Case-Modified configuration)	125
6.4.3 Case (3): Wind Speed = 2 m/s	130
6.4.4 Case (4): Wind Speed = 4 m/s	134
6.4.5 Case (5): Wind Speed = 6 m/s	138
6.4.6 Case (6): Wind Speed = 3.33 m/s - Wind Temperature = 47.2°C	142
6.4.7 Case (7): North East Wind	146
6.4.8 Case (8): North West Wind	150
6.4.9 Case (9): In Line VIP Area supply Jets with Inclined Supply	154
6.4.10 Case (10): In Line VIP Area supply Jets with Inclined Supply	and western
playground jets	158
CHAPTER (7): CONCLUSIONS AND RECOMMENDATION	NS FOR
FUTURE WORK	162
7.1 General	162
7.2 Conclusions	162
7.3 Recommendations for Future Work	163
REFERENCES	164

LIST OF FIGURES

Figure (1-1): Chart of Factors Affecting thermal comfort of human4
Figure (1-2): Charts representing factors affecting the thermal comfort collectively4
Figure (1-3): Effect of change in air velocity on the thermal comfort5
Figure (1-4): Relative Humidity and Comfort6
Figure (2-1): View of the Galatsi Arena [17]11
Figure (2-2): View of a part of the interior of the Galatsi Arena with the main air-
supply and exhaust devices [17]11
Figure (2-3): The simulated geometry and the numerical grid [17]12
Figure (2-4): Flow velocities at the level y-z and (a) $x = 10.0$ m and (b) $x = 30.0$ m for
$t_{in} = 16 ^{\circ}\text{C} [17]$
Figure (2-5): Temperature contours ($^{\circ}$ C) at the plane y-z and (a) x = 10.0 m and (b) x =
$30.0 \text{ m for } t_{in} = 16 ^{\circ}\text{C [17]}13$
Figure (2-6): Temperature contours ($^{\circ}$ C) at the plane y-z and (a) x = 10.0 m and (b) x =
$30.0 \text{ m for } t_{in} = 14 ^{\circ}\text{C [17]}13$
Figure (2-7): "Città dello Sport", Rome – General view and main building [18]15
Figure (2-8): CFD models of swimming hall and the Palasport [18]15
Figure (2-9): Swimming Center and Palasport HVAC systems [18]16
Figure (2-10): Air flow in the symmetry plane at swimming centre at Winter (HVAC
system off) [18]17
Figure (2-11): Temperature contours (°C) and velocity contours (m/s) at public stands
(HVAC system off) [18]17
Figure (2-12): Air flow in the symmetry plane at swimming centre at Winter (HVAC
system on) [18]
Figure (2-13): Temperature contours (°C) and velocity (m/s) contours at public stands
(HVAC system on) [18]18
Figure (2-14): Air flow in the symmetry plane at the Palasport hall at Winter (HVAC
system off) [18]19
Figure (2-15): Temperature contours (°C) and velocity contours (m/s) at public stands
(HVAC system off) [18]19
Figure (2-16): Air flow in the symmetry plane at the Palasport hall at Winter (HVAC
system on) [18]
Figure (2-17): Temperature contours (°C) and velocity contours (m/s) at public stands
(HVAC system on) [18]20
Figure (2-18): Horizontal cross-section of the stadium [19]21
Figure (2-19): Vertical cross-sections of the stadium (a) Cross-section αα'; (b) cross-
section $\beta\beta$ ' [19]
Figure (2-20): Ventilation openings: (a) between the stand and the roof construction (b)
between the fixed and the movable part of the roof [19]22
Figure (2-21):Comparison between numerical and experimental results in the four gates
A, B, C and D, for closed roof and reference wind direction of 228° [19]23
Figure (2-22): Detail of configuration (1) with open windows on the second tier [19].24

Figure (2-23): Cross-sections of the ventilation opening between the steel 1	roof
construction, the gutter and the concrete stand; (a) current configuration;	(b)
configuration (2) (half of the steel sheets removed); (c) configuration 3 (steel sheets	eets
removed entirely) [19]	24
Figure (2-24): The new Olympic ice hockey, behind the 1934 World Cup stad	
[20]	
Figure (2-25): Flexibility of use post-Olympics [20]	
Figure (2-26): Psychometric chart showing the fogging line, based on an ice surf	
temperature of -5°C [20]	
Figure (2-27): Example CFD model showing (a) temperature, (b) relative humidity,	
(c) wind speed in the winter case under cooling mode with maximum occupations.	
[20]	
Figure (2-28): Colonial Stadium, outside and inside view, respectively [21]	
Figure (2-29): Temperature contours when the stadium is full and the moving roo	
closed, for outside temperature of 35°C [21]	
Figure (2-30): Temperature contours and velocity vectors, respectively, for the case	
15 MW fire on pitch [21]	
Figure (2-31): The Lang Park stadium [21]	
Figure (2-32): Temperature contours inside the stadium the Lang Park stadium [21].	
Figure (2-33): Temperature contours for short and long cross-sections inside	
stadium, respectively [21]	
Figure (2-34): Wembley stadium [21]	
Figure (2-35): Melbourne Cricket Ground (MCG) [21]	
Figure (2-36): MCG re-development of the exhaust ventilation [21]	
Figure (2-37): velocity contours over two crossing planes inside the MCG stadium	
development configuration) [21]	
Figure (2-38): Swimming pool at the Melbourne Sports and Aquatic Centre (MSA)	
[21]	36
Figure (2-39): Temperature path lines over the pool [21]	36
Figure (2-40): Casey aquatic and recreational centre [21]	37
Figure (2-41): Velocity path lines over the pool [21]	37
Figure (2-42): Velocity contours inside the hall of the pool [21]	38
Figure (2-43): Oasis Arena– Sydney, Australia [21]	38
Figure (2-44): Iso-surface contours of 10%, 15% and 20% smoke concentration [21]	.39
Figure (2-45): Contours of smoke concentration inside the arena [21]	39
Figure (2-46): Configuration and Main Dimensions [22]	40
Figure (2-47): Configuration of case (1) [22]	41
Figure (2-48): Configuration of case (2) [22]	41
Figure (2-49): Configuration of case (3) [22]	42
Figure (2-50): Velocity contours (m/s) at $x = 8.4$ m (Case 1) [22]	42
Figure (2-51): Velocity contours (m/s) at $x = 8$ m (Case 2) [22]	43
Figure (2-52): Velocity contours (m/s) at $x = 10$ m, at the court area (Case 3) [22]	43
Figure (2-53): Velocity contours (m/s) at $x = 6.6$ m, at the spectators' area (Case	e 3)
[22]	44

Figure (2-54): Temperature contours (K) at $x = 8.4$ m (Case 1) [22]44
Figure (2-55): relative humidity contours (%) at $x = 8.4$ m (Case 1) [22]45
Figure (2-56): Temperature contours (K) at $x = 8m$ (Case 2) [22]45
Figure (2-57): relative humidity contours (%) at $x = 8$ m (Case 2) [22]46
Figure (2-58): Temperature contours (K) at $x = 10$ m, at the court area (Case 3)
[22]46
Figure (2-59): relative humidity contours (%) at $x = 10$ m at, the court area (Case 3)
[22]47
Figure (2-60): Velocity contours (m/s) at $x = 11.6$ m, at the court area, at the presence
of players (Case 1) [22]47
Figure (2-61): Velocity contours (m/s) at $x = 9.3$ m, at the spectators' area, at the
presence of spectators (Case 1) [22]48
Figure (2-62): Temperature contours (K) at $x = 11.6$ m, at the court area at the presence
of players (Case 1) [22]48
Figure (2-63): relative humidity contours (%) at $x = 11.6$ m, at the court area at the
presence of players (Case 1) [22]
Figure (2-64): Temperature contours (K) at $x = 9.3$ m, at the court area at the presence
of spectators (Case 1) [22]49
Figure (2-65): relative humidity contours (%) at $x = 9.3$ m, at the court area at the
presence of spectators (Case 1). [22]50
Figure (2-66): CO_2 concentrations at $x = 11.6$ m, at the court area (Case 1)
[22]50
Figure (2-67): CO_2 concentrations at $x = 9.8$ m, at the spectators' area (Case 1)
[22]51
Figure (2-68): Main dimensions and different roof types [23]52
Figure (2-69): The four stand arrangements and the three roof types, resulting in twelve
different stadium configurations [23]53
Figure (2-70): Wind-flow patterns in and around the stadium, in a horizontal plane at a
height of 1 m above the ground, for the four stadium configurations with a flat roof: (a)
A2; (b) B2; (c) C2; (d) D2 [23]53
Figure (2-71): Contours of dimensionless velocity magnitude (U/U ₁₀), in a horizontal
plane at a height of 1 m above the ground, for the four stadium configurations with a
flat roof: (a) A2; (b) B2; (c) C2; (d) D2 [23]54
Figure (2-72): Wind-flow pattern in a vertical cross-section in the middle of the stadium
(z = 60 m), for the four stadium configurations with a flat roof [23]55
Figure (2-73): Schematic representation of the wind-flow pattern in and around the
stadium for the four stadium configurations with a flat roof [23]55
Figure (2-74): Raindrop trajectories for 1 mm raindrops, released from three horizontal
lines at a height of 125 m, perpendicular to the flow direction, for $U_{10}=10$ m/s and for
four stadium configurations [23]56
Figure (2-75): Original stadium with cooling jet opening and ground jet opening
location [24]
Figure (2-76): Temperature contours of the stadium with mid-section roof cooling jets
and left side ground cooling jet turned on [24]58

Figure (2-77): Velocity vectors within the stadium [24]	58
Figure (2-78): Temperature contours of the whole stadium with both mid-section	roof
cooling jets and ground cooling jets turned on [24]	
Figure (2-79): Contours of velocity magnitude [24]	59
Figure (2-80): Stadium with extended roof spoiler [24]	60
Figure (2-81): Temperature contours of the stadium with mid-section roof cooling	
and left side ground cooling jet turned on [24]	
Figure (2-82): Velocity vectors within the stadium [24]	61
Figure (2-83): Temperature contours of the whole stadium with both mid-section	
cooling jets and ground cooling jets turned on [24]	61
Figure (2-84): Contours of velocity magnitude [24]	62
Figure (2-85): Spectators' area cross-section [25]	63
Figure (2-86): Location of planes selected for investigation [25]	63
Figure (2-87): Temperature contours in a vertical Y-Z plane at X=25, 50, and	75m
[25]	64
Figure (2-88): Temperature contours in a plane 0.5m above the spectators' seats for	east
and west sides, respectively [25]	64
Figure (2-89): Temperature contours in a vertical Y-Z plane at X=25, 50, and	75m
[25]	65
Figure (2-90): Temperature contours in a plane 0.5m above the spectators' seats for	east
and west sides, respectively [25]	65
Figure (2-91): Temperature contours in a vertical Y-Z plane at X=25, 50, and	75m
[25]	66
Figure (2-92): Temperature contours in a plane 0.5m above the spectators' seats for	east
and west sides, respectively [25]	66
Figure (3-1): ASHRAE thermal sensation scale	67
Figure (3-2): Relationship between PMV and PPD scales	73
Figure (4-1): Flow chart of a CFD analysis process	77
Figure (4-2): Stress components on the six faces of the fluid element	79
Figure (4-3): Near-Wall Treatments in FLUENT	86
Figure (4-4): Solution Algorithm	93
Figure (4-5): Stadium geometry for the first and the modified configurat	ions,
respectively	94
Figure (4-6): Closer view for the stadium showing the locations of the playground	l jets
for the first and the modified configurations, respectively	95
Figure (4-7): Back side shape of the stadium's canopy, wind direction, jets locations	s and
direction of the supplied air for the first and the modified configurat	tions,
respectively	
Figure (4-8): Meshed volume using mesh growth function	96
Figure (4-9): Wind direction over the stadium	
Figure (4-10): Location of the spectators' area	98
Figure (4-11): Positions of the studied planes	98
Figure (5-1): Overview of the sports hall of the gymnasium	
Figure (5-2): Position of the inlet-jets of the gymnasium	100

Figure (5-3): Physical model of CFD simulation
Figure (5-4): Simulated model of the gymnasium using GAMBIT program, with the
selected lines for calculations
Figure (5-5): Arrangement of the measuring points
Figure (5-6): Experimental values of velocities
Figure (5-7): Comparison between the numerical and the experimental results for group
(2)
Figure (5-8): Comparison between the numerical and the experimental results for group (9)
Figure (5-9): Comparison between the numerical and the experimental results for group
(14)
Figure (5-10): Comparison between the numerical and the experimental results for group (18)
Figure (5-11): Comparison between experimental, FLUENT and STACH-3 results102
Figure (6-1): Locations of spectators' jets, playground jets and spectators' seats of the 2-D model
Figure (6-2): Temperature contours (°C) for canopy length = 10 m, 15 m and 20 m,
respectively
Figure (6-3): Positions of the two lines parallel to spectators' seats
Figure (6-4): Temperature values along a line parallel to spectators' seats at a distance
of 0.5 m away from spectators' seats at the left side of the stadium for 3 different
canopy lengths
Figure (6-5): Temperature values along a line parallel to spectators' seats at a distance of 0.5 m away from spectators 'seats at the right side of the stadium for 3 different
•
canopy lengths
playground for 3 different canopy lengths
Figure (6-7): Temperature values over a horizontal line at a height of 1 m from
playground for 3 different canopy lengths111
Figure (6-8): Temperature values over a horizontal line at a height of 1.5 m from
playground for 3 different canopy lengths111
Figure (6-9): Temperature values over a horizontal line at a height of 2 m from
playground for 3 different canopy lengths112
Figure (6-10): Smooth and sharp designs of the stadium112
Figure (6-11): Temperature contours (°C) for canopy length = 10 m, 15m and 20 m,
respectively
Figure (6-12): Comparison between temperature values along a line parallel to
spectators' seats at a distance of 0.5 m away from spectators' seats for sharp and smooth
designs of the stadium for canopy length = 10 m (left side)113
Figure (6-13): Comparison between temperature values along a line parallel to
spectators' seats at a distance of 0.5 m away from spectators' seats for sharp and smooth
designs of the stadium for canopy length = 10 m (right side)113

Figure (6-14): Comparison between temperature values along a line para	illel to
spectators' seats at a distance of 0.5 m away from spectators' seats for sharp and s	smooth
designs of the stadium for canopy length = 15 m (left side)	
Figure (6-15): Comparison between temperature values along a line para	
spectators' seats at a distance of 0.5 m away from spectators' seats for sharp and s	
designs of the stadium for canopy length = 15 m (right side)	
Figure (6-16): Comparison between temperature values along a line para	
spectators' seats at a distance of 0.5 m away from spectators' seats for sharp and	
designs of the stadium for canopy length = 20 m (left side)	
Figure (6-17): Comparison between temperature values along a line para	
spectators' seats at a distance of 0.5 m away from spectators' seats for sharp and	
designs of the stadium for canopy length = 20 m (right side)	
Figure (6-18): Stadium isometric showing selected line for comparison	
Figure (6-19): Scaled Temperature distribution for three different mesh sizes o	
•	
red line.	
Figure (6-20): Velocity distribution for three different mesh sizes over the red lin	
Figure (6-21): Temperature contours ($^{\circ}$ C) at $x = 25$, 50 and 75 m, respectivel	=
(1)	
Figure (6-22): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (1)	
Figure (6-23): Temperature contours over a plane of height 0.5 m above the spe	
seats at the eastern and western sides, respectively, case (1)	
Figure (6-24): PMV contours over a plane of height 0.5 m above the spectators's	
the eastern and western sides, respectively, case (1)	
Figure (6-25): Temperature contours ($^{\circ}$ C) at z = 25, 65 and 110 m, respectivel	
(1)	
Figure (6-26): Path lines of air supplied from spectators' area jets, case (1)	
Figure (6-27): Path lines of air supplied from playground jets, case (1)	
Figure (6-28): Temperature contours ($^{\circ}$ C) at $x = 25$, 50 and 75 m, respectivel	-
(2)	
Figure (6-29): Temperature contours ($^{\circ}$ C) at the level of players at $x = 25$ r	
(2)	
Figure (6-30): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (2)	
Figure (6-31): Temperature contours over a plane of height 0.5 m above the spe	
seats at the eastern and western sides, respectively, case (2)	
Figure (6-32): PMV contours over a plane of height 0.5 m above the spectators'	seats at
the eastern and western sides, respectively, case (2)	
Figure (6-33): Temperature contours ($^{\circ}$ C) at $z=25$, 65 and 110 m, respectivel	y, case
(2)	127
Figure (6-34): Closer view for temperature contours (°C) near spectators' seats	at the
eastern and western sides at $z = 25$ m, case (2)	128
Figure (6-35): Closer view for PMV contours near spectators' seats at the easter	rn and
western sides at $z = 25$ m, case (2)	128
Figure (6-36): Path lines of air supplied from spectators' area jets, case (2)	129
Figure (6-37): Path lines of air supplied from playground jets, case (2)	129

Figure (6-38): Temperature contours ($^{\circ}$ C) at $x = 25$, 50 and 75 m, respectively (3)	
Figure (6-39): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (3)	131
Figure (6-40): Temperature contours over a plane of height 0.5 m above the spec	
seats at the eastern and western sides, respectively, case (3)	
Figure (6-41): PMV contours over a plane of height 0.5 m above the spectators' s	
the eastern and western sides, respectively, case (3)	
Figure (6-42): Temperature contours (°C) at $z = 25$, 65 and 110 m, respectively	
(3)	
Figure (6-43): Path lines of air supplied from spectators' area jets, case (3)	
Figure (6-44): Path lines of air supplied from playground jets, case (3)	
Figure (6-45): Temperature contours (°C) at $x = 25$, 50 and 75 m, respectively	
(4)	
Figure (6-46): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (4)	135
Figure (6-47): Temperature contours over a plane of height 0.5 m above the spec	ctators'
seats at the eastern and western sides, respectively, case (4)	
Figure (6-48): PMV contours over a plane of height 0.5 m above the spectators' s	
the eastern and western sides, respectively, case (4)	
Figure (6-49): Temperature contours ($^{\circ}$ C) at $z = 25$, 65 and 110 m, respectivel	
(4)	
Figure (6-50): Path lines of air supplied from spectators' area jets, case (4)	137
Figure (6-51): Path lines of air supplied from playground jets, case (4)	137
Figure (6-52): Temperature contours ($^{\circ}$ C) at x = 25, 50 and 75 m, respectively	y, case
(5)	138
Figure (6-53): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (5)	139
Figure (6-54): Temperature contours over a plane of height 0.5 m above the spec	ctators'
seats at the eastern and western sides, respectively, case (5)	139
Figure (6-55): PMV contours over a plane of height 0.5 m above the spectators' s	seats at
the eastern and western sides, respectively, case (5)	140
Figure (6-56): Temperature contours ($^{\circ}$ C) at $z = 25$, 65 and 110 m, respectively	y, case
(5)	
Figure (6-54): Path lines of air supplied from spectators' area jets, case (5)	141
Figure (6-55): Path lines of air supplied from playground jets, case (5)	141
Figure (6-59): Temperature contours ($^{\circ}$ C) at $x = 25$, 50 and 75 m, respectively	y, case
(6)	142
Figure (6-60): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (6)	143
Figure (6-61): Temperature contours over a plane of height 0.5 m above the spec	ctators'
seats at the eastern and western sides, respectively, case (6)	143
Figure (6-62): PMV contours over a plane of height 0.5 m above the spectators' s	seats at
the eastern and western sides, respectively, case (6)	144
Figure (6-63): Temperature contours ($^{\circ}$ C) at $z = 25$, 65 and 110 m, respectively	y, case
(6)	144
Figure (6-64): Path lines of air supplied from spectators' area jets, case (6)	145
Figure (6-65): Path lines of air supplied from playground jets, case (6)	145

Figure (6-66): Wind direction over the stadium for the current case	146
Figure (6-67): Temperature contours ($^{\circ}$ C) at x = 25, 50 and 75 m, respectively	y, case
(7)	146
Figure (6-68): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (7)	147
Figure (6-69): Temperature contours over a plane of height 0.5 m above the specific	
seats at the eastern and western sides, respectively, case (7)	
Figure (6-70): PMV contours over a plane of height 0.5 m above the spectators's	
the eastern and western sides, respectively, case (7)	
Figure (6-71): Temperature contours ($^{\circ}$ C) at $z=25$, 65 and 110 m, respectivel	
(7)	
Figure (6-72): Path lines of air supplied from spectators' area jets, case (7)	
Figure (6-73): Path lines of air supplied from playground jets, case (7)	
Figure (6-74): Wind direction over the stadium for the current case	
Figure (6-74): What direction over the standard for the earliest case	
(8)	-
Figure (6-76): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (8)	
Figure (6-77): Temperature contours over a plane of height 0.5 m above the spectage of the acctors and western sides, respectively, associated.	
seats at the eastern and western sides, respectively, case (8)	
Figure (6-78): PMV contours over a plane of height 0.5 m above the spectators's	
the eastern and western sides, respectively, case (8)	
Figure (6-79): Temperature contours ($^{\circ}$ C) at z = 25, 65 and 110 m, respectivel	
(8)	
Figure (6-80): Path lines of air supplied from spectators' area jets, case (8)	
Figure (6-81): Path lines of air supplied from playground jets, case (8)	
Figure (6-82): The two arrangements of spectators' jets	
Figure (6-83): Supplied air direction of the spectators' jets	
Figure (6-84): Temperature contours ($^{\circ}$ C) at x = 25, 50 and 75 m, respectively	-
(9)	
Figure (6-85): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (9)	
Figure (6-86): Temperature contours over a plane of height 0.5 m above the spec	
seats at the eastern and western sides, respectively, case (9)	
Figure (6-87): PMV contours over a plane of height 0.5 m above the spectators's	
the eastern and western sides, respectively, case (9)	
Figure (6-88): Temperature contours ($^{\circ}$ C) at $z = 25$, 65 and 110 m, respectivel	•
(9)	156
Figure (6-89): Path lines of air supplied from spectators' area jets, case (9)	157
Figure (6-90): Path lines of air supplied from playground jets, case (9)	157
Figure (6-91): Temperature contours ($^{\circ}$ C) at $x = 25$, 50 and 75 m, respectively	y, case
(10)	158
Figure (6-92): Temperature contours ($^{\circ}$ C) at y = 1.5 m, case (10)	159
Figure (6-93): Temperature contours over a plane of height 0.5 m above the spec	ctators'
seats at the eastern and western sides, respectively, case (10)	159
Figure (6-94): PMV contours over a plane of height 0.5 m above the spectators's	seats at
the eastern and western sides, respectively, case (10)	160